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PREFACE  
 

The curriculum at AIOU is designed on modern parameters using the latest 

information, trends, theories, and techniques. An extensive consultative process is 

also a basic component of the activity. Development of the study material to help 

the students located throughout the country is taken as a challenge. AIOU takes 

pride in undertaking this major task for the effective learning of the students. 

 

The BS Economics is being offered by the Department of Economics of Allama 

Iqbal University for the students who are interested in the field of economics. The 

scheme of study for BS Economics has been designed and the courses are 

developed to make these relevant to the emerging national and global trends and to 

meet needs of the society in this domain. The study material provides a 

comprehensive coverage of the core contents for BS Economics Program.  The 

selection of, and the treatment of study materials have been designed to meet both 

the general and specific aims set out by the Higher Education Commission (HEC) 

through the National Curriculum Revision Committee (NCRC).  

 

In the end, I am happy to extend my gratitude to the Course Team, Chairman, 

Course Development Coordinator, Unit-writer, reviewer, and Editor for the 

development of the course. Any suggestions for the improvement in the course will 

be warmly welcomed by the Department of Economics. 

 

 

 

 

 

 

Prof. Dr. Nasir Mehmood 

Vice Chancellor 
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INTRODUCTION TO THE COURSE 
 

Welcome to course “Fundamentals of Econometrics” which is part of BS 
Economics scheme of study of the Department of Economics, Faculty of Social 
Sciences and Humanities, Allama Iqbal Open University Islamabad Pakistan. 
 
Fundamentals of Econometrics is a basic course of econometrics which is 
concerned with the tolls of economic theory, mathematics, and statistical inference 
that are applied to the analysis of economic phenomenon. It consists of a set of tools 
to help in understanding the subject matter of econometrics and the concept of 
regression models. It also provides some tools of estimation and diagnostic tests for 
model selection. Fundamentals of Econometrics is one of the most important course 
in the subject of Economics which deals with the empirical analysis of economic 
models and forecasting. 
 
This course will provide the concepts of econometrics, two variable regression 
models and multiple variables regression models. The subject matter handled in 
this course may be classified into broad sub-groups of Econometrics: specially 
concepts of regression analysis, Heteroskedasticity, Multicollinearity and 
Autocorrelation. There are nine units in total. The first unit is devoted to the 
concepts of Introduction to Econometrics. The rest of the units linked to each other. 
In each of broad areas tackled, the format adopted is as follow:  
 

Unit two covers the analysis of two variables regression model, its estimation and 
statistical inference. It also covers the properties of the least squares method and 
the measurement of goodness of fit. Unit three presents the multiple regression 
model, its estimation, and tests for stability. Unit four consists of the matrix 
approach to linear regression model, hypothesis testing and the correlation Matrix. 
In unit five the concepts of multicollinearity will be discussed. Units six and seven 
consist of the concepts of Heteroskedasticity and Autocorrelation respectively. Unit 
eight presents a comprehensive account of Model specification and Diagnostic 
Testing. In unit nine Simultaneous Equation Models will be discussed.  
 

The Study Guide in your hand provides you with the introduction to each Unit followed 
by the objectives of the Unit. In each Unit throughout the Study Guide, we have been 
given self-assessment questions. They are meant to assist your comprehension after 
reading the unit. A useful reading list is also provided for each Unit.  
 
This is a Fundamental level 03 credit hours course on Econometrics, specially designed for 
students through the distance education system of the Allama Iqbal Open University. This 
course will be presented through the Learning Management System (LMS) Aaghi Portal.  
We hope that you will find this course useful and interesting. Suggestions for the 
improvement of course, as well as the Study Guide, will be highly appreciated.  
         
 
                 Rizwan Ahmed Satti 
        Course Coordinator 
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COURSE LEARNING OUTCOMES 
 

The course is designed for use in the semester study of Fundamentals of 

Econometrics. It should also be useful to everyone who seeks to address the 

question of relevance of Econometrics. 

 

Upon successful completion of this course, the learner will be able to. 

 

• Explain the concept of Econometrics.   

 

• Describe the Two Variables and Multivariable Regression Analysis.  

 

• Understand the concepts of Multicollinearity, Heteroskedasticity and Auto 

correlation. 

 

• Analyze the structure of Model Specification and Diagnostic Testing. 

 

• Comprehend the concept of Simultaneous Equation Models.  

 

Throughout this course, you will also see related learning outcomes identified in 

each unit. You can use the learning outcomes to help organize your learning and 

gauge your progress. 
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STRUCTURE OF THE STUDY GUIDE 
 

The course “Fundamentals of Econometrics” a three credit hours course consists of 

nine units. A unit is a study of 12–16 hours of course work for two weeks. The 

course work of one unit will include study of compulsory reading materials and 

suggested books. You should make a timetable for studies to complete the work 

within the allocated time.  

 

 This study guide/course has been organized to enable you to acquire the skill of 

self-learning. For each unit an introduction is given, to help you to develop an 

objective analysis of the major and sub-themes discussed in the prescribed reading 

materials. Besides this, learning outcomes of each unit are very specifically laid 

down to facilitate in developing logical analytical approach. Summary of main 

topics has also been included in the contents to understand the topics. We have 

given you self-assessments questions and activities which are not only meant to 

facilitate you in understanding the required reading materials but also to provide 

you an opportunity to assess yourself. Recommended books and important links 

have been given to understand the main topics. Key terms have also been included 

in the study guide. 

 

Every course has a study package including study guides, assignments and tutorial 

schedule uploaded by the University. For the books suggested at the end of each 

unit, you can visit online resources, a nearby library, or the Central Library at the 

main campus in AIOU.  
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ABOUT THE AUTHOR(S) 
 

All the units of the course “Fundamentals of Econometrics” are written by Dr. 

Muhammad Jamil who is serving as Professor of Economics, at Ghulam Ishaq Khan 

Memorial Chair (SBP), Kashmir Institute of Economics, The University of Azad 

Jammu & Kashmir, Muzaffarabad.  

 

 Dr. Muhammad Jamil's distinguished career in quantitative analysis and 

econometrics has been marked by his association with prestigious institutions and 

his profound expertise in the field. He had served as an Assistant Professor and later 

on the position of Associate Professor at the School of Economics, Quaid-i-Azam 
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conducted workshops on applied economics. Dr. Jamil's teaching repertoire 

includes courses like "Econometric Methods," "Financial Econometrics," and 
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In addition to his teaching roles, Dr. Jamil's research and participation in seminars 

and workshops have made a significant impact on the field of econometrics in 

Pakistan. His research papers and active involvement in seminars on topics like 

branch-less banking reflect his ability to apply econometric techniques using 

various software tools. His work has not only contributed to the academic 

community, but has also played a vital role in advancing economic research and 

quantitative analysis in the institutions where he has served. 



 x 

COURSE MATERIALS 

 
The primary learning materials for this course are: 

• Readings (e.g., study guides, recommended books, online links, and scholarly 

articles) 

• Lectures, (workshops)  

• Other resources. 

 

All course materials are free to access and can be found through the links provided 

in each unit and sub-unit of the course. Pay close attention to the notes that 

accompany these course materials, as they will instruct you as to what specifically 

to read or watch at a given point in the course and help you to understand how these 

individual materials fit into the course. You can also access to a list of all the 

materials used in this course by clicking on resources mentioned in each unit. 

 

Technical Requirements 

This course is delivered online through the Learning Management System (LMS). You 

will be required to have access to a computer or web-capable mobile device and have 

consistent access to the internet either to view or download the necessary course 

resources and to attempt any auto-graded course assessments and the final exam. 

 

Methods of Instruction 

Following are the methods for directing this guide and course also and then you 

will be able to understand the macroeconomics course through. 

• Lecture online   

• Mandatory workshops 

• Workshop Quizzes 

• Class discussion during workshops 

• Individual paired and small group exercises. 

• Use of library for research projects 

• Use of videos lectures  

• Use of the internet  

 

Types of Assignments 

• Students must complete assignments from the recommended books and other 

sources also. 

• Students must be able to research and complete the assignments, which will 

include library, Internet, and another media research. 
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Activities 

In most of the units, different types of activates are mentioned for better 

understanding the course. If you thoroughly study the materials and follow the links 

and videos, then you will be able to understand the course in the easiest way. 

 

HOW TO USE THE STUDY GUIDE? 
 

Before attending a workshop, it is imperative to prepare yourself in the following 

manner to get the maximum benefit of it.  

You are required to follow these steps: 

 

Step 1 

Go through the. 

1. Course Outlines  

2. Course Introduction 

3. Course Learning Outcomes 

4. Structure of the Course 

5. Assessment Methods 

6. Recommended Books 

7. Suggested Readings 

 

Step 2 

Read the whole unit and make notes of those points which you could not fully 

understand or wish to discuss with your course tutor.  

 

Step 3 

Go through the self-assessment questions at the end of each unit. If you find any 

difficulty in comprehension or locating relevant material, discuss it online with 

your tutor.  

 

Step 4 

Study the compulsory recommended books at least for three hours in a week 

recommended in your study guide. AIOU Tries to read it with the help of a specific 

study guide for the course. You can raise questions on both during your online 

tutorial meetings and workshops. 

 

Step 5  

First go through assignments, which are mandatory to solve/complete for this 

course. Highlight all the points you consider difficult to tackle, and then discuss 

them in detail with your tutor. This exercise will keep you regular and ensure good 

results in the form of higher grades.  
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Assessment 

For each three credit hours course, a student will be assessed as follow: 

• Two Assignments (continuous assessment during semester).  

• Final Examination (at the end of each semester) 

• Mandatory participation in the workshop (as per AIOU policy) 

• Workshop Quizzes 

• Group discussion  

• Presentation  

Assignments 

• Assignments are written exercises that are required to complete at home or 

place of work after having studied 9 units/study guides with the help of 

compulsory and suggested reading material within the scheduled study 

period. (See the assignments scheduled).  

• For this course 02 assignments are uploaded on the AIOU Aaghi Portal along 

with allied material. You are advised to complete your assignments within the 

required time and upload it to your assigned tutor.  

• This is compulsory course work, and its successful completion will make you 

eligible to take the final examination at the end of the semester.  

• You will upload your assignments to your appointed tutor, whose name is 

notified to you for assessment and necessary guidance through concerned 

Regional Office of AIOU. You can also locate your tutor through AIOU 

website. Your tutor will return your online assignments after marking and 

providing necessary academic guidance and supervision.  

 

Workshops 

• The online mandatory workshops through (LMS) Aghi Portal of Bachelor 

Studies BS Economics courses will be arranged during each semester or as-

per AIOU policy.   Attendance and course quizzes are compulsory in 

workshops. A student will not be declared pass until he/she attends the 

workshop satisfactorily and actively.  

• The duration of a workshop for each 03-credit course will be as per AIOU 

policy.  

 

Revision before the Final Examination 

It is very important that you revise the course as systematically as you have been 

studying.  

 

You may find the following suggestions helpful. 
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• Go through the course unit one by one, using your notes during tutorial 

meetings to remind you of the key concepts or theories. If you have not 

already made notes, do so now. 

• Prepare a chronology with short notes on the topics/events/personalities 

included in all units. 

• Go through your assignments and check your weak areas in each case. 

• Test yourself on each of the main topics, write down the main points or go 

through all the notes. 

• Make sure to attend the workshops and revise all the points that you find 

difficult to comprehend. 

• Try to prepare various questions with your fellow students during the last few 

tutorial meetings. A group activity in this regard is helpful. Each student 

should be given a topic and revise his topics intensively, summarize it and 

revise in group, then all members raise queries and questions. This approach 

will make your studies interesting and provide you with an opportunity to 

revise thoroughly. 

• For the final exam paper, go through last semesters’ papers. This can clarify 

questions and decide how to frame an answer. 

• Before your final exams, make sure that, 

➢ you get your roll-number slip. 

➢ you know the exact location of the examination center. 

➢ You know the date and time of the examination. 

 

Note: 

This study guide has been developed to guide the students about the course 

“Fundamentals of Econometrics”. In this context we want to make it clear that you 

are not bound to depend entirely upon the recommended books in the study guide. 

In case you are unable to find any recommended book, please feel free to consult 

any other book which covers the main contents of the course. 

 

Moreover, you can get information regarding your Assignments, Workshop 

Schedule, Assignment, Results, Tutors, and Final Examination from the AIOU 

website: www.aiou.edu.pk and through your LMS account. You are advised to 

regularly visit the university website to update yourself about the activities. 

 

 

 

 

 

 

 

http://www.aiou.edu.pk/
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COURSE OUTLINE 
 

This course is comprised of the following units. 

 

UNIT 01: An Introduction to Econometrics: 

• Why Study Econometrics? 

• What is Econometrics? 

• Economic and Econometric Model 

• Nature and Sources of Data for Econometric Analysis 

 

UNIT 02: Two Variables Linear Regression Model:  

• Introduction 

• The Concept of the Population Regression Function (PRF) 

• The Significance of the Stochastic Disturbance Term 

• The method of Ordinary Least Squares (OLS) 

• Assumptions of The Ordinary Least Squares Method 

• Properties of The Least Squares Method Measures of the Goodness of Fit  

• The Probability Distribution of Disturbance Term  

• The Normality assumption on Disturbance Term 

• Properties of OLS Estimator under Normality Assumptions 

• The Method of Maximum Likelihood (ML) 

• Statistical Inference in the Linear Regression Model 

• Analysis of Variance of the Linear Regression Model 

 

UNIT 03: Multiple Regression Models: 

• Introduction 

• A Model with Two Explanatory Variables 

• Statistical Inference in The Multiple Regression Model 

• Interpretation of the Regression Coefficients 

•  Partial and Multiple Correlation coefficients and their Relationship 

• Prediction in the Multiple Regression Model 

• The Multiple Coefficient of Determination  

• Analysis of Variance and Tests of Hypothesis 

• Tests for Stability 

 

UNIT  04: The Matrix Approach to Linear Regression Model 

• Introduction 

• The k-Variable Linear Regression Model 

• Assumptions of Linear Regression model in Matrix Notations 
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• OLS Estimation and Properties of OLS Estimators   

• Hypothesis Testing in Matrix Notations 

• Analysis of Variance in Matrix Notation 

• The Correlation Matrix 

 

UNIT 05: Multicollinearity: 

• Introduction 

• Nature of the Multicollinearity 

• Estimation in the Presence of Multicollinearity 

• Consequences of Multicollinearity 

• Detection of Multicollinearity 

• Remedial Measures 

 

UNIT 06: Heteroscedasticity:   

• Introduction 

• Nature of the Heteroscedasticity 

• Detection of Heteroscedasticity 

• Consequences of Heteroscedasticity 

• Solutions to Heteroscedasticity Problems 

 

UNIT 07: Autocorrelation: 

• Introduction 

• Nature of The Autocorrelation 

• Consequences of Autocorrelation  

• Methods of Detection of Autocorrelation 

• Remedial Measures 

 

UNIT 08:  Model Specification and Diagnostic Testing 

• Introduction 

• Model Selection Criteria 

• Types of Specification Errors 

• Consequences of Model Specification Errors 

• Tests of Specification Errors 

• Errors of Measurements 

• Nested Versus Non-Nested Models 

• Tests of Non-Nested Hypothesis 

• Model Selection Criteria in Nested and Non-Nested Models 
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UNIT 09: Simultaneous Equation Models: 

• Introduction 

• The Nature of the Simultaneous Equation Models 

• Endogenous and Exogenous Variables 

• Structural Equations and Reduced form Equations 

• The Identification Problem 

• Methods of Identification 

• Methods of Estimations (OLS, ILS, 2SLS) 

• Limitations of Dynamic Analysis 

 

Textbooks & Supplies: 

 

1. Gujrati, D. J. - Basic Econometrics (Latest Edition) McGraw-Hill Company. 

2. Maddala, G. S. – Econometrics (Latest Edition) – McGraw-Hill Company. 

3. Koutsoyiannis, A.- Theory of Econometrics (Latest Edition) - McMillan. 

  

Additional Readings: 

 

1. Dougherty, Christopher – Introduction to Econometrics (Latest edition) Oxford 

University Press. 

2. Free online course on Introduction to Econometrics, available from 

http://asadzaman.net. 

3. Pindyck & Rubinfeld- Econometric Models & Economic Forecasts (Latest 

Edition) McGraw-Hill Inc.  

4. Stock H. J. and M. W. Watson, Introduction to Econometrics, India: Pearson 

Education. 

5. Stewart G. K., Introduction to Applied Econometrics, United States of America: 

Curt Hinrichs. 

6. Wonnacot & Wonnacot Econometrics (Latest Edition) -John Wiley, New York. 

 

http://asadzaman.net/
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1.1. INTRODUCTION 
 

Econometrics, a discipline that marries economics, statistics, and mathematics, is a 

pivotal field of study for anyone seeking to understand the complex dynamics of 

economic systems. It provides the tools necessary to test economic theories, 

evaluate policy interventions, and make informed predictions based on real-world 

data. The study of econometrics equips students with the skills to critically analyze 

economic phenomena and contribute to evidence-based decision-making. 

 

At the heart of econometrics are economic and econometric models. Economic 

models, grounded in economic theories and assumptions, offer a theoretical 

framework to understand how different economic agents interact in markets. 

Econometric models, on the other hand, enhance these economic models by 

integrating statistical techniques and real-world data. They serve as a bridge 

between theory and empirical analysis, providing a framework for quantitative 

assessment and hypothesis testing. 

 

Data is the lifeblood of econometric analysis. Economists rely on different types of 

data, including time series, cross-sectional, and panel data, to study various aspects 

of economic behavior. The nature and sources of data for econometric analysis are 

diverse, ranging from government agencies and international organizations to 

surveys and field experiments. The quality and availability of data are crucial for 

ensuring accurate and meaningful econometric results (Gujarati & Porter, 2009; 

Sharma, 2023). 

 

In conclusion, the study of econometrics provides a systematic framework for 

analyzing economic relationships and making predictions. By combining economic 

theory with statistical methods, economists can extract valuable insights from 

economic data and contribute to the empirical understanding of economic 

phenomena. 

 

1.2. OBJECTIVES 
 

While delving into the sections mentioned, students should aim to achieve the 

following objectives: 

• understanding the importance of Econometrics: Students should 

comprehend why econometrics is a crucial field of study. They should 

understand how econometrics allows for the testing of economic theories, 

the evaluation of policy interventions, and the making of informed 

predictions based on real-world data. 
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• grasping the Concept of Econometrics: Students should be able to define 

econometrics and explain how it combines economics, statistics, and 

mathematics to analyze economic data. 

• differentiating between Economic and Econometric Models: Students 

should understand the distinction between economic and econometric 

models. They should recognize how econometric models enhance economic 

models by integrating statistical techniques and real-world data. 

• recognizing the Role of Data in Econometrics: Students should 

appreciate the importance of data in econometric analysis. They should 

understand the different types of data (time series, cross-sectional, and panel 

data) and the various sources from which this data can be obtained. 

• applying Econometric Principles: Students should aim to apply the 

principles and techniques of econometrics in analyzing economic 

phenomena. This includes understanding how to use econometric models to 

test economic theories, evaluate policy interventions, and make informed 

predictions. 

• critical Thinking and Analysis: Students should develop the ability to 

critically analyze economic phenomena using econometric tools. This 

includes questioning assumptions, interpreting results, and understanding 

the limitations of econometric analysis. 

• connecting Theory with Practice: Students should strive to connect 

theoretical concepts with practical applications. This includes 

understanding how econometric models can be used to analyze real-world 

economic issues and inform policy decisions. 
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1.3. Major Topics 
 

Following are the major topics that are discussed with detail in section 1.4. 

• Why study Econometrics? 

• What is Econometrics? 

• Economic and Econometric Model 

• Nature and Sources of Data for Econometric Analysis 
 

1.4. Summary of the Unit 
 

1.4.1. The Significance of Studying Econometrics 
 

Econometrics is a vital field of study that bridges the gap between economic theory 

and empirical analysis. It equips economists with the necessary tools to rigorously 

test economic theories, evaluate policy interventions, and make informed 

predictions based on real-world data. By studying econometrics, students gain the 

skills required to critically analyze economic phenomena and contribute to 

evidence-based decision-making in both academia and policy circles. 
 

The importance of econometrics in economic analysis cannot be overstated. It 

provides a robust framework for testing economic theories, forecasting future 

trends, and informing policy decisions. As the study by Koutsoyiannis (1977) 

highlighted, econometrics is a crucial tool for economists as it allows them to 

quantify relationships between economic variables, thereby enabling them to make 

predictions about future economic conditions based on past data. 
 

Take, for example, the theory of the income-consumption relationship. This theory 

posits that an increase in income should lead to a corresponding increase in 

consumption expenditure. Econometric analysis enables economists to collect and 

analyze data on income and consumption expenditure from households. By 

employing statistical techniques, economists can estimate the relationship between 

these variables and assess its significance and magnitude. This empirical analysis 

provides insights into the actual behavior of individuals and households, enriching 

our understanding of economic phenomena. 
 

The value of studying econometrics is rooted in its capacity to provide empirical 

evidence that either supports or refutes economic theories. Economic theory 

provides valuable insights into human behavior and market dynamics, but it often 

relies on simplifying assumptions that may not fully encapsulate the complexity of 

real-world economic interactions. Econometric analysis allows economists to test 

these theoretical assumptions using real-world data, thereby gaining a deeper 

understanding of economic behavior and drawing robust conclusions. 
 



6 

 

Moreover, econometrics is not only useful for economists but also for various other 

fields. For instance, in finance, econometric models are used to predict stock prices, 

interest rates, and other financial variables. In the public sector, econometric 

analysis is used to evaluate the effectiveness of policy measures and to forecast the 

impact of proposed policies. 
 

In the context of economic development, econometrics plays a pivotal role. The 

studies emphasize the role of econometrics in understanding the complex dynamics 

of economic growth. By using econometric techniques, researchers can identify the 

key drivers of economic growth and assess the impact of various factors such as 

investment, education, and technological progress on economic development. 
 

However, it's important to note that while econometrics is a powerful tool, it is not 

without its limitations. As pointed out by Leamer (1983), econometric models are 

based on assumptions, and if these assumptions are not met, the results can be 

misleading. Therefore, it is crucial to use econometric methods with caution and to 

interpret the results in the light of the underlying assumptions and the quality of the 

data used. 
 

Based on the book by Gujarati and Porter (2009), the importance of studying 

econometrics can be understood from several perspectives: 

• Empirical Testing of Economic Theories: Econometrics provides tools for 

testing economic theories. For instance, the theory of demand suggests that 

there is a negative relationship between price and quantity demanded. 

Econometrics allows us to test this theory using real-world data (Gujarati & 

Porter, 2009, p. 5). 

• Forecasting: Econometrics can be used to forecast economic variables. For 

example, econometric models can be used to predict future GDP, inflation 

rates, stock prices, and so on. These forecasts can be invaluable for 

policymakers and businesses (Gujarati & Porter, 2009, p. 7). 

• Policy Evaluation: Econometrics is also crucial for policy evaluation. 

Policymakers often need to know the potential impact of their policies 

before they are implemented. Econometric models can be used to simulate 

the effects of various policy proposals, helping policymakers make 

informed decisions (Gujarati & Porter, 2009, p. 9). 

• Quantitative Analysis of Economic Phenomena: Econometrics allows 

economists to quantify economic phenomena. For example, it can be used 

to estimate the elasticity of demand for a product, the impact of education 

on wages, and so on. This quantitative analysis can provide valuable 

insights that are not immediately apparent from a qualitative analysis 

(Gujarati & Porter, 2009, p. 11). 
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In conclusion, econometrics is an indispensable tool in economic analysis. It 

provides a rigorous and systematic approach to understanding economic 

phenomena and making predictions about future economic conditions. However, 

like any tool, it must be used with care and understanding of its limitations. 
 

1.4.2. What is Econometrics? 
 

Econometrics, a term coined by Ragnar Frisch (1933), is a multidisciplinary field 

that marries economics, statistics, and mathematics. It is a scientific discipline that 

applies statistical and mathematical methods to the analysis and interpretation of 

economic data, thereby enabling the empirical verification of economic theory and 

the quantification of economic phenomena (Gujarati, 2011). 
 

At the heart of econometrics is the development and application of econometric 

models. These models, often expressed in mathematical form, provide a structured 

framework for quantifying and exploring the relationships between different 

economic variables. The most fundamental of these is the linear regression model, 

which posits a linear relationship between a dependent variable and one or more 

independent variables (Gujarati, 2011). 
 

The process of estimating econometric models involves the application of statistical 

techniques to estimate unknown parameters, such as regression coefficients, based 

on observed data. A commonly employed method is the Ordinary Least Squares 

(OLS) estimation, which minimizes the sum of squared residuals between the 

observed and predicted values of the dependent variable (Gujarati, 2011). This 

method has been widely used in econometrics due to its desirable statistical 

properties, such as unbiasedness and efficiency under certain conditions 

(Wooldridge, 2012). 
 

Once the parameters of the model have been estimated, the next step involves the 

analysis of the statistical significance and economic interpretation of the estimated 

coefficients. Statistical hypothesis tests, such as t-tests and F-tests, are conducted 

to determine the significance of the relationships between variables (Gujarati, 

2011). The economic interpretation of the coefficients provides insights into the 

direction and magnitude of the relationships, allowing economists to draw 

meaningful conclusions about economic phenomena (Wooldridge, 2012). 
 

Econometric models also serve as a basis for making predictions about future 

economic outcomes. By utilizing the estimated model parameters, economists can 

forecast the values of the dependent variable under different scenarios or policy 

changes. These predictions provide valuable insights for understanding the 

potential impact of economic factors and policy interventions on economic 

outcomes (Stock & Watson, 2015). 
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However, econometrics is not without its challenges and limitations. Econometric 

analysis relies on several assumptions, such as linearity, independence, and 

homoscedasticity, which need to be carefully considered and tested. Violations of 

these assumptions can lead to biased or inefficient estimates (Gujarati, 2011). 

Additionally, issues such as endogeneity, measurement errors, and omitted variable 

bias can pose challenges in econometric analysis. Econometricians employ 

advanced techniques, such as instrumental variable estimation and panel data 

methods, to address these challenges and ensure the robustness and validity of their 

findings (Wooldridge, 2012). 
 

In conclusion, econometrics offers a systematic framework for analyzing economic 

relationships and making predictions. By combining economic theory with 

statistical methods, economists can extract valuable insights from economic data 

and contribute to the empirical understanding of economic phenomena. The field 

of econometrics continues to evolve, with ongoing research and development of 

new methods and techniques to address the complex challenges of economic 

analysis (Stock & Watson, 2015). 
 

1.4.3. Economic and Econometric Model 
 

The field of economics utilizes models as powerful tools to simplify complex 

economic systems and elucidate the relationships between different economic 

variables. Economic models are constructed based on economic theories and 

assumptions, providing a framework to comprehend how individuals, households, 

firms, and governments make economic decisions and interact in markets. These 

models offer theoretical insights into economic behavior and enable predictions 

regarding the impact of changes in economic variables. 
 

However, economic models often incorporate simplifying assumptions to focus on 

specific aspects of economic behavior or facilitate analysis. While these 

assumptions allow economists to derive theoretical insights, they may not capture 

the full complexity of real-world economic phenomena. This is where econometric 

models play a crucial role. Econometric models advance economic models by 

integrating statistical techniques and real-world data. They serve as a bridge 

between theory and empirical analysis, providing a framework for quantitative 

assessment and hypothesis testing. 
 

Econometric models often specify the mathematical form that represents the 

relationship between economic variables. For instance, a simple linear regression 

model is employed to study the relationship between two variables, Y and X, and 

can be expressed as: 

𝑌 =  𝛽0  + 𝛽1𝑋 +  𝜀      (1.1) 
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Here in equation 1.1, 𝑌 represents the dependent variable, 𝑋 signifies the 

independent variable, 𝛽0 and 𝛽1 denote the regression coefficients, and 𝜀 captures 

the error term accounting for unobserved factors influencing 𝑌. The estimation of 

coefficients 𝛽0 and 𝛽1 employs econometric techniques to quantify the relationship 

between 𝑌 and 𝑋 based on available data. 
 

Econometric models enable economists to test economic theories against real-

world data. By estimating model parameters and conducting hypothesis tests, 

economists can evaluate the statistical significance of the relationships proposed by 

economic theory. This empirical analysis provides evidence to support or reject 

economic hypotheses, leading to refinements of economic models to better align 

with real-world behavior. 
 

Moreover, econometric models facilitate policy simulations and counterfactual 

analyses. By manipulating the values of independent variables within the model, 

economists can assess the potential impact of policy interventions or changes in 

economic variables on the dependent variable. This aids policymakers in 

understanding the potential consequences of various policy choices and designing 

more effective economic policies. 
 

Econometric models are not confined to linear relationships or simple models. They can 

encompass more intricate relationships, non-linearities, and interactions among variables. 

Advanced econometric techniques, such as panel data analysis, time series analysis, and 

simultaneous equation models, enable economists to explore more complex economic 

phenomena and capture the dynamic nature of economic relationships. 
 

Panel data analysis, as explained by Gujarati (2003), is a method that combines 

cross-sectional data (data collected at one point in time across several subjects) and 

time-series data (data collected over time for a single subject) to provide a richer 

dataset. This method allows for the control of individual heterogeneity, improves 

the efficiency of econometric estimates, and enables the modeling of complex 

behavioral patterns that cannot be captured by cross-sectional or time-series data 

alone (Hsiao, 2007). 
 

Time series analysis, on the other hand, focuses on data collected over time for a 

single subject. It is particularly useful in forecasting and understanding the 

underlying forces and structure that produced the observed data. Gujarati (2003) 

explains that time series data may involve trends, seasonality, cycles, and irregular 

movements. Econometric models using time series data can help in understanding 

and predicting the behavior of these variables over time. For instance, Box and 

Jenkins (1970) developed the autoregressive integrated moving average (ARIMA) 

model, a cornerstone in time series forecasting. 
 



10 

 

Simultaneous equation models, as the name suggests, involve a system of equations 

where the endogenous variables are determined simultaneously. These models are 

particularly useful in situations where there are circular causal relationships between 

variables, making it difficult to distinguish between dependent and independent 

variables (Gujarati, 2003). The simultaneous equation models have been extensively 

used in macroeconomics and econometrics to understand the complex 

interrelationships between economic variables (Bowden & Turkington, 1990). 
 

In summary, econometric models build upon economic models by incorporating 

statistical techniques and real-world data. They offer a systematic framework for 

estimating and testing economic relationships, evaluating economic theories, 

conducting policy analyses, and making predictions. Econometric modeling 

enhances our understanding of economic behavior and facilitates evidence-based 

decision-making. The use of advanced econometric techniques, such as panel data 

analysis, time series analysis, and simultaneous equation models, allows for a more 

comprehensive and nuanced understanding of economic phenomena. 
 

1.4.4. Nature and Sources of Data for Econometric Analysis 
 

In the realm of econometric analysis, data is the bedrock upon which all 

investigations and estimations are built. The quality, relevance, and 

representativeness of the data used can significantly influence the accuracy and 

reliability of econometric models. Economists use different types of data, including 

time series, cross-sectional, and panel data, to study various aspects of economic 

behavior and apply specific econometric techniques for analysis. 
 

Time series data, which consists of observations of a variable over time, is a 

common type of data used in econometric analysis. This type of data captures the 

dynamics and trends of economic variables over a specific time period and can 

include annual GDP growth rates, monthly unemployment rates, or daily stock 

prices. Time series data allows economists to explore interdependencies and 

patterns in economic variables over time, providing valuable insights into the 

temporal dynamics of economic phenomena (Gujarati, 2003). 
 

Cross-sectional data, on the other hand, consists of observations collected at a 

specific point in time, typically representing different individuals, regions, or 

countries. This type of data can include household surveys, industry-level data, or 

census data. Cross-sectional data provides insights into the differences and 

variations in economic variables across distinct units or groups. It allows 

economists to examine the heterogeneity among different units and understand the 

variations in economic behavior across different entities (Wooldridge, 2012). 
 

Panel data combines elements of both time series and cross-sectional data. It 

consists of observations on multiple variables for a specific set of units, such as 
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individuals, firms, or countries, over time. Panel data provides valuable insights 

into individual dynamics and facilitates the analysis of both within-unit and 

between-unit variations. Panel data analysis is particularly beneficial for studying 

individual behavior, evaluating policy impacts, and capturing the effects of time-

varying variables (Baltagi, 2008). 
 

Economists obtain data from diverse sources to conduct econometric analysis. 

Government agencies, central banks, statistical offices, and international 

organizations serve as primary sources of economic data. These institutions collect 

and publish data on macroeconomic variables, labor markets, trade, inflation, and 

other economic indicators. Additionally, economists may undertake their data 

collection exercises, such as surveys or field experiments, to gather specific data 

pertinent to their research questions (Beck & Katz, 1995). 
 

However, data often requires preprocessing and transformation before it is suitable 

for econometric analysis. Missing data, outliers, or measurement errors necessitate 

addressing through imputation, robust estimation techniques, or data cleaning 

procedures. Econometricians must also consider issues such as endogeneity, 

sample selection bias, and measurement errors that can impact the estimation and 

interpretation of econometric models (Gujarati & Porter, 2009). 
 

In conclusion, the quality and availability of data are essential for econometric 

analysis. Different types of data, including time series, cross-sectional, and panel 

data, provide insights into different aspects of economic behavior and require 

specific econometric techniques. Reliable and relevant data from trusted sources 

are crucial to ensuring accurate and meaningful econometric results. 
 

1.5. Self-Assessment Questions 
 

• What is econometrics and why is it important to study it? 

• What is the difference between an economic model and an econometric 

model? Provide examples. 

• What are the different types of data used in econometric analysis and what 

insights do they provide? 

• What are some of the sources from which economists obtain data for 

econometric analysis? 

• What are some of the challenges and limitations associated with 

econometric analysis? 

• How do econometric models contribute to policy simulations and 

counterfactual analyses? Provide an example. 
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2.1. INTRODUCTION 
 

In the study of econometrics, we encounter important concepts in regression 

analysis. The Population Regression Function (PRF) forms the basis for 

understanding relationships between variables. Stochastic disturbance terms 

represent unseen factors affecting the model, adding uncertainty. 

 

Ordinary Least Squares (OLS) is a popular method to estimate regression 

coefficients, offering reliable results. To ensure OLS's effectiveness, we must 

consider its assumptions, which guarantee consistent estimations. OLS properties 

make it efficient and powerful compared to other unbiased methods. Evaluating the 

model's fit, Measures of Goodness of Fit assess how well the model captures data 

variability. Additionally, considering the Probability Distribution of Disturbance 

Term helps us understand error assumptions and enables robust statistical analysis. 

Exploring normality assumptions further enhances the statistical properties of OLS 

estimators, facilitating hypothesis testing. For more insights into parameter 

estimation, we may also consider the Method of Maximum Likelihood (ML), which 

aligns with OLS under certain conditions. 

 

By delving into these concepts, researchers gain valuable knowledge and skills to 

navigate the complexities of regression analysis and draw meaningful conclusions 

from data. 

 

2.2. OBJECTIVES 
 

While reading the sections of this document, students should aim to achieve the 

following objectives: 

• understand the concept of the Population Regression Function (PRF) and 

its significance in econometrics. 

• comprehend the significance of the Stochastic Disturbance Term in the 

regression model. 

• learn about the method of Ordinary Least Squares (OLS) and its application 

in estimating regression coefficients. 

• familiarize themselves with the assumptions of the Ordinary Least Squares 

Method and understand their importance in ensuring the effectiveness of 

OLS. 

• understand the properties of the Least Squares Method and why it is 

preferred over other methods. 

• learn about the measures of the Goodness of Fit and how they assess the 

model's performance. 
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• understand the Probability Distribution of the Disturbance Term and its role 

in statistical analysis. 

• learn about the Normality assumption on the Disturbance Term and its 

importance in enhancing the statistical properties of OLS estimators. 

• understand the properties of OLS Estimator under Normality Assumptions. 

• learn about the Method of Maximum Likelihood (ML) and its application 

in parameter estimation. 

• understand the concept of Statistical Inference in the Linear Regression 

Model and its importance in drawing conclusions from the model. 

• learn about the Analysis of Variance of the Linear Regression Model and 

its role in understanding the variability in the data. 

 

By achieving these objectives, students will gain a comprehensive 

understanding of the key concepts in econometrics and be able to apply these 

concepts in practical scenarios. 
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2.3. Major Topics 
 

• The Concept of the Population Regression Function (PRF) 

• The Significance of the Stochastic Disturbance Term 

• The method of Ordinary Least Squares (OLS) 

• Assumptions of The Ordinary Least Squares Method 

• Properties of The Least Squares Method  

• Measures of the Goodness of Fit  

• The Probability Distribution of Disturbance Term  

• The Normality assumption on Disturbance Term 

• Properties of OLS Estimator under Normality Assumptions 

• The Method of Maximum Likelihood (ML) 

• Statistical Inference in the Linear Regression Model 

• Analysis of Variance of the Linear Regression Model 

 

2.4. Summary of the Units 
 

2.4.1. The Concept of the Population Regression Function (PRF) 
 

The Population Regression Function (PRF) is a fundamental concept in the field of 

econometrics and statistics. It represents the relationship between a dependent 

variable and one or more independent variables in a population. The PRF is 

typically expressed in the form of an equation, which can be linear or non-linear 

depending on the nature of the relationship between the variables. 

 

The PRF, in essence, is an equation that delineates the average value of the 

dependent variable as a function of the explanatory variables. It is important to note 

that this equation is not directly observable, but rather, it is an underlying truth that 

we strive to approximate through statistical methods. The PRF is often represented 

as 𝐸(𝑌|𝑋), where 𝐸 denotes the expected value, 𝑌 is the dependent variable, and 𝑋 

represents the explanatory variables. This notation underscores the conditional 

nature of the PRF, indicating that the expected value of 𝑌 is contingent upon the 

values of 𝑋. 

 

In the context of linear regression, the PRF is typically assumed to be a linear 

function. This assumption, while not always accurate, simplifies the analysis and 

provides a useful starting point for understanding the relationship between 

variables. However, it is crucial to remember that the true PRF may be nonlinear, 

and further investigation may be necessary to accurately capture the complexity of 
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the relationship. In its simplest form, the PRF for a linear regression model with 

one independent variable is expressed as: 

𝑌 =  𝛽0  + 𝛽1𝑋 +  𝑢      (2.1) 

where: 𝑌 is the dependent variable, 𝑋 is the independent variable, 𝛽0 and 𝛽1 are 

parameters of the model, and 𝑢 is the error term. 

 

The parameters 𝛽0 and 𝛽1 represent the intercept and slope of the regression line, 

respectively. The intercept (𝛽0) is the value of 𝑌 when 𝑋 is zero, and the slope (𝛽1) 

represents the change in 𝑌 for a one-unit change in 𝑋. The error term (𝑢) captures 

the influence of all other factors not included in the model that affect the dependent 

variable. It is assumed to have a mean of zero and is uncorrelated with the 

independent variable. 

 

The PRF provides a theoretical framework for understanding the relationship 

between variables in a population. However, in practice, we usually do not have 

access to the entire population data and have to estimate the PRF using a sample. 

This leads to the concept of the Sample Regression Function (SRF), which is an 

estimate of the PRF based on sample data. It's important to note that the PRF is a 

deterministic function, meaning it provides a fixed output for a given input. On the 

other hand, the SRF is a stochastic function, meaning it includes a random error 

term to account for the variability in the data. 

 

2.4.2. The Significance of the Stochastic Disturbance Term 

 

In the realm of econometric analysis, the stochastic disturbance term, often denoted 

as ' 𝑢 ', holds a position of paramount importance. It is a term that encapsulates the 

myriad of factors that are not explicitly included in the model but nonetheless exert 

an influence on the dependent variable (Greene, 2003). The stochastic disturbance 

term is a random variable with a mean of zero, and it is uncorrelated with the 

explanatory variables. This assumption is crucial for the Ordinary Least Squares 

(OLS) estimator to be unbiased and consistent (Wooldridge, 2012). 

 

The equation for a simple linear regression model, inclusive of the stochastic 

disturbance term is presented in 2.1, where 𝑢 is the stochastic disturbance term. The 

term u is assumed to have a normal distribution with a mean of zero and a constant 

variance, 𝜎2. This assumption, known as homoscedasticity, is vital for the efficient 

operation of the OLS estimator (Gujarati, 2003). 

 

The stochastic disturbance term, 𝑢, is a catch-all for all the unobserved factors that 

affect the dependent variable 𝑌 but are not included as explanatory variables in the 

model. These factors could include measurement errors, omitted variables, or 
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random shocks. The inclusion of the stochastic disturbance term in the model 

allows us to capture these unobserved effects and thus provides a more realistic and 

comprehensive representation of the relationship between the dependent and 

explanatory variables (Stock & Watson, 2011). 

 

In conclusion, the stochastic disturbance term is a fundamental component of 

econometric models. It encapsulates the unobserved factors influencing the 

dependent variable, allowing for a more comprehensive and realistic representation 

of the relationship under study. Its assumptions are critical for the unbiasedness and 

consistency of the OLS estimator, making it a vital element in econometric analysis. 

 

2.4.3. The Method of Ordinary Least Squares (OLS) 

 

The method of Ordinary Least Squares (OLS) is a widely used statistical technique 

employed in econometrics to estimate the parameters of a linear regression model. 

It is a powerful tool for analyzing the relationship between a dependent variable 

and one or more explanatory variables. 

 

In the context of a linear regression model with one explanatory variable, the OLS 

method aims to find the line that best fits the observed data points. The goal is to 

minimize the sum of squared differences (residuals) between the actual values of 

the dependent variable and the predicted values based on the linear relationship 

with the explanatory variable. 

 

Let's consider again equation (2.1), where 𝑌 represents the dependent variable (the 

variable we want to predict or explain), 𝑋 is the explanatory variable (the variable 

we believe influences 𝑌), 𝛽0 is the intercept of the regression line (the value of 𝑌 

when 𝑋 is zero), 𝛽1 is the slope of the regression line (the change in 𝑌 for a unit 

change in 𝑋), and 𝑢 is the error term (representing the unexplained variation in 𝑌 

that is not captured by the linear relationship with 𝑋). 

 

The OLS method estimates the values of β₀ and β₁ that minimize the sum of squared 

residuals: 

𝑚𝑖𝑛 ∑(𝑌𝑖 − (𝛽0  +  𝛽1𝑋𝑖))2     (2.2) 

where the summation is taken over all the observed data points (𝑖 = 1 𝑡𝑜 𝑛), and 𝑌𝑖 

and 𝑋𝑖 are the actual values of the dependent and explanatory variables, 

respectively. 

 

The OLS estimator provides the values of 𝛽̂0 and 𝛽̂1 that result in the best-fitting 

line through the data points, minimizing the vertical distance between the data 
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points and the regression line. It aims to find the line that best explains the 

relationship between 𝑋 and 𝑌 based on the available data. 

 

The formulas to estimate β₀ and β₁ using the OLS method are as follows: 

𝛽̂1 =
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

∑(𝑋𝑖−𝑋̅)2       (2.3) 

𝛽̂0 = 𝑌̅ − 𝛽̂1𝑋̅       (2.4) 

Where: 𝛴 denotes the summation symbol, 𝑋̅ is the mean of the 𝑋 values, 𝑌̅ is the 

mean of the 𝑌 values.  

 

The slope (𝛽̂1) measures the change in 𝑌 for a one-unit change in 𝑋, accounting for 

the relationship between the two variables. The intercept (𝛽̂0) represents the value 

of 𝑌 when 𝑋 is zero (if applicable) and is derived by subtracting the product of the 

slope (𝛽̂1) and the mean of 𝑋 (𝑋̅) from the mean of 𝑌 (𝑌̅). 

 

So, OLS estimator of the slope (𝛽̂1) can be obtained by the ratio of covariance 

between 𝑋 and 𝑌 (𝐶𝑜𝑣(𝑋, 𝑌) = 𝜎𝑋𝑌) divided by the variance of 𝑋 (𝑉𝑎𝑟(𝑋) = 𝜎𝑋
2).  

𝛽̂1 =
𝐶𝑜𝑣(𝑋,𝑌)

𝑉𝑎𝑟(𝑋)
=

𝜎𝑋𝑌

𝜎𝑋
2       (2.5) 

Or by using the formula of correlation between 𝑋 and 𝑌,  𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝑟𝑋𝑌 =

𝜎𝑋𝑌/(𝜎𝑋𝜎𝑌)  , we can write formula for OLS estimator of slope (𝛽̂1) as follows: 

𝛽̂1 =
𝐶𝑜𝑟𝑟(𝑋,𝑌)

𝑉𝑎𝑟(𝑋)
=

𝑟𝑋𝑌 .  𝜎𝑌

𝜎𝑋
     (2.6) 

Likewise, OLS estimator of the slope (𝛽̂1) presented in (2.3), can be written in the 

deviation form as follow: 

𝛽̂1 =
∑ 𝑥𝑦

∑ 𝑥2       (2.7) 

Where, 𝑥 =  𝑋𝑖 − 𝑋̅ represents the deviation of variable 𝑋 from its mean 𝑋̅ and  𝑦 =
𝑌𝑖 − 𝑌̅ represents the deviation of dependent variable 𝑌 from its mean 𝑌̅. There is 

one another formula which can be employed to get the OLS estimator calculates 

the slope (𝛽̂1) which is presented as follow: 

 𝛽̂1 =
𝑛 ∑ 𝑋𝑖𝑌𝑖−∑ 𝑋𝑖 ∑ 𝑌𝑖

𝑛 ∑ 𝑋𝑖
2−(∑ 𝑋𝑖)2

      (2.8) 

Once both the OLS estimator slope (𝛽̂1) and the intercept (𝛽̂0) are estimated, they 

together define the linear regression model. This model helps economists 

understand the relationship between the variables and make predictions based on 

the linear relationship observed in the data. The OLS estimators play a vital role in 

econometrics by allowing us to interpret the strength and direction of the 

relationship between the variables and draw meaningful conclusions from the data. 

 

In conclusion, the method of Ordinary Least Squares is a powerful tool to estimate 

the parameters of a linear regression model with one explanatory variable. By 
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minimizing the sum of squared residuals, the OLS method identifies the best-fitting 

line that explains the relationship between the variables. The estimated values of β₀ 

and β₁ allow economists to analyze the strength and direction of the relationship 

and make predictions based on the linear model. 

 

2.4.4. Assumptions of the Ordinary Least Squares Method  
 

The assumptions of Ordinary Least Squares (OLS) are: 

 

2.4.4.1. Linearity in Parameters  
 

This assumption posits that the regression model is linear in the parameters. In other 

words, the dependent variable (𝑌) is a linear function of the parameters 

(𝛽0, 𝛽1, … , 𝛽𝑘) and the error term (𝑢). It doesn't necessarily mean that the 

relationship between 𝑌 and the independent variables (𝑋1, 𝑋2, … , 𝑋𝑘) is linear, but 

rather that the parameters are linear. This assumption allows us to use linear algebra 

to estimate the parameters. 
 

2.4.4.2. Random Sampling 
 

This assumption states that the observations are randomly drawn from the 

population. Each observation of the dependent and independent variables is a 

random draw from the underlying population. This is crucial for the generalizability 

of the results. In the context of time series data, this assumption usually implies that 

the time series is stationary. It is assumed that the 𝑋 variable(s) and the error term 

are independent, that is:  

𝐶𝑜𝑣 (𝑋𝒊 , 𝑢𝑖)  =  0      (2.9) 

 

2.4.4.3. Zero Conditional Mean of Disturbance 
 

This assumption implies that the error term (𝑢) has a zero population mean given 

any value of the explanatory variables. In other words, the errors, on average, cancel 

out. This assumption is crucial for the OLS estimators to be unbiased. Given the 

value of 𝑋𝒊, the mean, or expected, value of the random disturbance term 𝑢𝑖 is zero. 

Symbolically, we have: 

𝐸 (𝑢𝑖|𝑋𝒊)  =  0      (2.10) 

Or, if 𝑋 is non-stochastic,   

𝐸 (𝑢𝑖)  =  0       (2.11) 

 

2.4.4.4. Homoscedasticity or Constant Variance of Disturbance 
 

This assumption states that the error term has the same variance given any value of 

the explanatory variables. This means that the spread or dispersion of the 

distribution of the error term does not change across different levels of the 
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independent variables. In other words, the variance of the error, or disturbance, term 

is the same regardless of the value of 𝑋. Symbolically, 

𝑉𝑎𝑟 (𝑢𝑖) = 𝐸[𝑢𝑖 − 𝐸(𝑢𝑖|𝑋𝒊)]2 

= 𝐸(𝑢𝑖
2|𝑋𝒊)   because of assumption 2.4.4.3 

= 𝐸(𝑢𝑖
2)   if 𝑋𝒊 is non-stochastic  

= 𝜎2       (2.12)   

Where, 𝑉𝑎𝑟 stands for variance. 

If this assumption is violated (i.e., if the error variance changes across different 

levels of the independent variables, a situation known as heteroscedasticity), it can 

lead to inefficient and potentially biased estimates. 

𝑉𝑎𝑟 (𝑢𝑖) ≠ 𝜎2 or  𝑉𝑎𝑟 (𝑢𝑖) = 𝜎𝑖
2   (2.13) 

 

2.4.4.5. No Autocorrelation between the Disturbances 
 

This assumption asserts that the error term of one observation is not correlated with 

the error term of any other observation. Given any two 𝑋 values, 𝑋𝑖 and 𝑋𝑗 (𝑖 ≠ 𝑗), 

the correlation between any two 𝑢𝑖 and 𝑢𝑗  (𝑖 ≠ 𝑗) is zero. In short, the observations 

are sampled independently. Symbolically,  

𝐶𝑜𝑣 (𝑢𝑖 , 𝑢𝑗|𝑋𝑖, 𝑋𝑗) = 0 

𝐶𝑜𝑣 (𝑢𝑖 , 𝑢𝑗) = 0  if 𝑋𝒊 is non-stochastic  (2.14) 

Where 𝑖 and 𝑗 are two different observations and where 𝐶𝑜𝑣 means covariance. If 

this assumption is violated (i.e., if there is autocorrelation), it can lead to inefficient 

estimates and can also affect the validity of standard hypothesis tests. 

𝐶𝑜𝑣 (𝑢𝑖 , 𝑢𝑗) ≠ 0 or 𝐶𝑜𝑣 (𝑢𝑖 , 𝑢𝑗) = 𝜌  (2.15) 

Where 𝜌 is the coefficient of autocorrelation. 

 

2.4.4.6. Number of Observations  
 

The Number of observations (𝑛) must be greater than the number of parameters (𝑘) 

to be estimated. Alternatively, the number of observations must be greater than the 

number of explanatory variables. 

 

2.4.4.7. Nature of 𝑿 Variables  
 

The 𝑋 values in each sample must not all be the same. Technically, 𝑉𝑎𝑟 (𝑋) must 

be a positive number. Furthermore, there can be no outliers in the values of the 𝑋 

variable, that is, values that are very large in relation to the rest of the observations. 

 

2.4.4.8. Normality of Errors 
 

This assumption posits that the error term is normally distributed. This assumption 

is especially important for hypothesis testing. If the errors are normally distributed, 
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it allows us to make statements about the probability distribution of the OLS 

estimators and conduct hypothesis tests. 

 

Each of these assumptions is crucial for the OLS estimator to have desirable 

properties such as unbiasedness, efficiency, and consistency. Violations of these 

assumptions can lead to issues such as biased or inefficient estimates and can also 

affect the validity of hypothesis tests. 
 

2.4.5. Properties of the Least Squares Estimators  
 

The properties of OLS estimators are often referred to as the Gauss-Markov 

theorem, which establishes, under certain assumptions (e.g., homoscedasticity, no 

perfect multicollinearity), the OLS estimators satisfy Best Linear Unbiased 

Estimators (BLUE) properties. This theorem mathematically proves that OLS is the 

best among all unbiased linear estimators in terms of minimum variance. Here are 

the key properties of OLS estimators with reference to BLUE: 

 

2.4.5.1. Best  
 

The OLS estimators are the "best" among all linear unbiased estimators. This means 

that if we consider all possible unbiased linear estimators for the regression 

coefficients, the OLS estimators have the smallest variance, making them the most 

efficient. In other words, no other linear unbiased estimator can provide more 

precise and accurate estimates of the regression coefficients than the OLS 

estimators. 

 

2.4.5.2. Linear  
 

The OLS estimators are "linear" because they are obtained by taking linear 

combinations of the observed dependent variable and explanatory variables. The 

linear nature of OLS makes it computationally straightforward and allows for 

closed-form solutions. 

 

2.4.5.3. Unbiased 
 

The OLS estimators are "unbiased" because, on average, they provide estimates 

that are centered around the true population values of the regression coefficients. 

This property holds under the assumption that the errors have a mean of zero and 

are uncorrelated with the explanatory variables. This can be mathematically 

represented as: 

 𝐸 (𝛽̂) = 𝛽       (2.17) 
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2.4.5.4. Estimators  
 

The term "Estimators" refers to the fact that OLS provides a method to estimate the 

unknown parameters (regression coefficients) of the linear regression model based 

on the observed data. 

 

These properties demonstrate the favorable characteristics of the OLS estimators, 

making them a widely used and reliable technique in econometrics. However, it is 

essential to verify that the assumptions of the linear regression model are met to 

ensure the validity of the OLS estimates and their interpretations. 

 

2.4.6. The Coefficient of Determination 𝑹𝟐: A Measure of “Goodness of Fit”  

 

The Coefficient of Determination, often denoted as 𝑅², is a statistical measure used 

in regression analysis to assess the "goodness of fit" of the regression model. It 

quantifies the proportion of the total variation in the dependent variable that is 

explained by the independent variables in the model. 𝑅² ranges from 0 to 1, where 

a higher value of 𝑅² indicates a better fit of the regression model to the data. 

𝑅² measures the strength and reliability of the relationship between the dependent 

variable (𝑌) and the explanatory variables (𝑋1, 𝑋2, . . . , 𝑋𝑘) in the regression model. 

It provides insights into how well the model captures the variation in the dependent 

variable and how much of that variation is due to the independent variables' 

influence. 

 

The concept of 𝑅² was first introduced by American mathematician Karl Pearson 

in 1896 and was later developed further by Ronald Fisher in the 1910s. 𝑅² is widely 

used in various fields, including economics, social sciences, and engineering, to 

evaluate the effectiveness of regression models. 

 

Mathematically, 𝑅² is defined as the ratio of the explained variation (sum of squares 

due to regression) to the total variation (total sum of squares): 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=

∑(𝑌̂𝑖−𝑌̅̂)
2

∑(𝑌𝑖−𝑌̅)
2 =

∑ 𝑦̂𝑖
2

∑ 𝑦𝑖
2     (2.18) 

Where, 𝐸𝑆𝑆 represents explained sum of square calculated by ∑ 𝑦̂𝑖
2 =

∑(𝑌̂𝑖 − 𝑌̅̂)
2

which is variation of 𝑌 values about their mean (𝑌̅ = 𝑌̅̂), 𝑇𝑆𝑆 represents 

the total sum of square calculated by ∑ 𝑦𝑖
2 = ∑(𝑌𝑖 − 𝑌̅)

2
. 

 

The total variation in the observed 𝑌 values about their mean value can be 

partitioned into two parts, one explained sum of square (𝐸𝑆𝑆) and the other 

unexplained or residual sum of square (𝑈𝑆𝑆). Mathematically,  
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𝑇𝑆𝑆 = 𝐸𝑆𝑆 + 𝑈𝑆𝑆      (2.19) 

Diving both side of the equation by 𝑇𝑆𝑆, we obtain: 
𝑇𝑆𝑆

𝑇𝑆𝑆
=

𝐸𝑆𝑆

𝑇𝑆𝑆
+

𝑈𝑆𝑆

𝑇𝑆𝑆
       

1 =
∑(𝑌̂𝑖−𝑌̅̂)

2

∑(𝑌𝑖−𝑌̅)
2 +

∑ 𝑢𝑖
2

∑(𝑌𝑖−𝑌̅)
2  

1 = 𝑅2 +
∑ 𝑢𝑖

2

∑(𝑌𝑖−𝑌̅)
2      

𝑅2 = 1 −
∑ 𝑢𝑖

2

∑(𝑌𝑖−𝑌̅)
2      (2.20) 

Additionally, 𝑅2 can be expressed in terms of the correlation coefficient (𝑟) 

between the observed values of the dependent variable and the predicted values 

from the regression model: 

 𝑅2 = 𝑟2 

 𝑅2 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

√(∑ 𝑥𝑖
2)(∑ 𝑦𝑖

2)

 

 𝑅2 =
𝑛 ∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2 ∑(𝑌𝑖−𝑌̅)2
 

𝑅2 =
𝑛 ∑ 𝑋𝑖𝑌𝑖−(∑ 𝑋𝑖)(∑ 𝑌𝑖)

√[𝑛 ∑ 𝑋𝑖
2−(∑ 𝑋𝑖)2][𝑛 ∑ 𝑌𝑖

2−(∑ 𝑌𝑖)2]

    (2.21) 

The Coefficient of Determination 𝑅2 has several important properties that provide 

valuable insights into the goodness of fit of a regression model. These properties 

help in assessing the effectiveness and reliability of the model in explaining the 

variation in the dependent variable. Here are the key properties of 𝑅2: 

 

• R² ranges from 0 to 1. A value of R² equal to 0 indicates that the independent 

variables in the model do not explain any of the variation in the dependent 

variable. On the other hand, an R² value of 1 implies that the independent 

variables perfectly explain all the variation in the dependent variable. 
 

• 𝑅2 quantifies the proportion of the total variation in the dependent variable 

that is explained by the independent variables in the regression model. For 

example, if R² is 0.70, it means that 70% of the variation in the dependent 

variable is explained by the independent variables. 
 

• 𝑅2 is often referred to as a measure of "goodness of fit." It assesses how 

well the regression model fits the observed data points. A higher R² 

indicates a better fit, meaning that the model captures a larger portion of the 

variability in the dependent variable. 
 

 

• 𝑅2 is easy to interpret. It provides a single numerical value that summarizes 

the model's explanatory power. It allows researchers to communicate the 
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percentage of the variation in the dependent variable explained by the model 

to a broader audience. 
 

• 𝑅2 is directly related to the correlation coefficient (r) between the observed 

values of the dependent variable and the predicted values from the 

regression model. Specifically, R² is equal to the square of the correlation 

coefficient (R² = r²). 
 

• 𝑅2 can be used to compare different regression models. Comparing R² 

values among alternative models helps in selecting the model that provides 

the best fit to the data and the highest explanatory power. 

 

Other than the above mentioned properties, 𝑅2 should be used carefully by keeping 

in mind following limitations: 

 

• 𝑅2 has limitations, especially in the context of multiple regression. It tends 

to increase with the addition of more explanatory variables, even if the new 

variables do not significantly improve the model's explanatory power. 

Adjusted 𝑅2 is often used to address this issue. 

Adjusted 𝑅2 = 𝑅̅2 = 1 − [(1 − 𝑅2) (
𝑛−1

𝑛−𝑘
)]   (2.22)  

• 𝑅2 may be inflated by overfitting, especially in complex models. Overfitting 

occurs when a model is too flexible and fits the noise in the data rather than 

the underlying true relationship. Adjusted R² penalizes for the number of 

variables in the model to address this issue. 
 

• 𝑅2 should not be interpreted as a test of causality. Even if 𝑅2 is high, it does 

not imply a causal relationship between the independent and dependent 

variables. Causality requires additional empirical or experimental evidence. 
 

In summary, 𝑅2 is a valuable measure in regression analysis that quantifies the 

proportion of variation in the dependent variable explained by the independent 

variables. It provides an easy-to-understand summary of the model's goodness of 

fit and allows researchers to compare and select the best-fitting models. However, 

it is essential to interpret R² in conjunction with other diagnostic measures and be 

cautious about its limitations in certain situations. 

 

2.4.7. The Probability Distribution of Disturbance Term 

 

In the study of econometrics, we often want to understand the behavior of certain 

estimators, like 𝛽̂1. This estimator is a kind of average, calculated from our data, 

which includes both the values of our outcome variable (𝑌) and our predictor 
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variable (𝑋). In our analysis, we usually consider these 𝑋 values as fixed or non-

random. 

 

The value of 𝛽̂1 is ultimately a linear function of the random variable 𝑢𝑖, which is 

random by assumption. Therefore, the probability distribution of 𝛽̂1 (and also of 

𝛽̂0) will depend on the assumption made about the probability distribution of 𝑢𝑖. 

This is crucial because we want to make guesses or inferences about the true 

population values of these estimators, and the nature of the probability distribution 

of 𝑢𝑖 assumes an extremely important role in hypothesis testing. 

 

However, the method we're using, Ordinary Least Squares (OLS), doesn't tell us 

anything about how 𝑢𝑖 is distributed. This is a bit of a problem because it limits 

how much we can infer from our sample to the population. To get around this, we 

often assume that 𝑢𝑖 follows a normal distribution. When we add this normality 

assumption to our existing assumptions, we get what's called the classical normal 

linear regression model (CNLRM). This model is more powerful because it allows 

us to make more precise inferences about the population and provides a stronger 

basis for hypothesis testing in regression analysis. 

 

2.4.8. The Normality Assumption on Disturbance Term 

 

The normality assumption of residuals is of utmost importance in Ordinary Least 

Squares (OLS) regression due to its impact on the validity and reliability of the 

statistical analysis. When the residuals, or errors, follow a normal distribution, the 

OLS estimators become unbiased, efficient, and attain the status of Best Linear 

Unbiased Estimators (BLUE). This property ensures that the estimated coefficients 

provide the most accurate representation of the underlying population parameters. 

Researchers heavily rely on these estimators to draw meaningful inferences about 

the relationships between variables and make precise predictions in various fields, 

such as economics, social sciences, and engineering. 

 

The normality assumption plays a crucial role in hypothesis testing and constructing 

confidence intervals around the regression coefficients. These statistical tests 

depend on the assumption of normality to accurately assess the significance of 

explanatory variables and the overall goodness-of-fit of the model. Deviations from 

normality can lead to incorrect conclusions and undermine the validity of statistical 

inferences. By adhering to the normality assumption, researchers can conduct valid 

t-tests and F-tests, providing a strong basis for making well-founded decisions and 

understanding the significance of the explanatory variables in the regression model. 
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Furthermore, the normality assumption impacts the efficiency of OLS estimators, 

particularly in large samples. When errors follow a normal distribution, the OLS 

estimators converge to their true values at a faster rate, resulting in more accurate 

estimates as the sample size increases. This is essential for obtaining reliable 

estimates in empirical research, where large samples are often used. However, 

while OLS can be robust to moderate departures from normality in large samples, 

small samples or strong statistical inferences require careful consideration of the 

normality assumption. It is prudent for researchers to assess the normality 

assumption through various diagnostic tests and graphical methods to ensure the 

validity of their OLS results and maintain the integrity of their regression analysis. 

 

2.4.9. Properties of OLS Estimator under Normality Assumptions 

 

Under the normality assumptions, the Ordinary Least Squares (OLS) estimator in 

regression analysis possesses several important properties that make it a powerful 

and reliable tool for estimating population parameters: 

 

2.4.9.1. Unbiasedness  

 

When the errors in the model follow a normal distribution, the OLS estimator is 

unbiased. It means that on average, the OLS estimator provides estimates of the 

regression coefficients that are centered around the true population values. This 

property ensures that the OLS estimator is not systematically overestimating or 

underestimating the population parameters. 

 

2.4.9.2. Efficiency 

 

Among all unbiased estimators, the OLS estimator has the minimum variance under 

normality assumptions. It is the most efficient estimator, meaning it provides the 

most precise and reliable estimates of the population coefficients compared to other 

unbiased estimators. This efficiency is crucial in obtaining accurate and reliable 

estimates with smaller standard errors. 

 

2.4.9.3. Best Linear Unbiased Estimator (BLUE) 

 

The combination of unbiasedness and efficiency makes the OLS estimator the Best 

Linear Unbiased Estimator (BLUE) under normality assumptions. No other linear 

unbiased estimator can outperform the OLS estimator in terms of precision and 

accuracy. 
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2.4.9.4. Consistency 

 

With normality assumptions, the OLS estimator is a consistent estimator. As the 

sample size increases, the OLS estimator converges to the true population 

parameters, providing more accurate estimates with larger sample sizes. 

 

2.4.9.5. Normality of Residuals:  

 

Under normality assumptions, the OLS residuals (or errors) are themselves 

normally distributed with mean zero. This property is beneficial for conducting 

valid statistical tests, constructing confidence intervals, and assessing model fit. 𝛽̂0 

(being the linear function of 𝑢𝑖), is normally distributed with:  

 Mean:   𝐸(𝛽̂0) = 𝛽0 

 Variance:  𝑉𝑎𝑟(𝛽̂0) = 𝜎
𝛽̂0

2 =
∑ 𝑋𝑖

2

𝑛 ∑ 𝑥𝑖
2 𝜎2 

 In short:  𝛽̂0~𝑁 (𝛽0, 𝜎
𝛽̂0

2 )    (2.23) 

Similarly, 𝛽̂1 (being the linear function of 𝑢𝑖), is normally distributed with 

Mean:   𝐸(𝛽̂1) = 𝛽1 

 Variance:  𝑉𝑎𝑟(𝛽̂1) = 𝜎
𝛽̂1

2 =
𝜎2

∑ 𝑥𝑖
2 

 In short:  𝛽̂1~𝑁 (𝛽1, 𝜎
𝛽̂1

2 )    (2.24) 

 

2.4.9.6. Statistical Inference 
 

The normality assumptions allow for valid statistical inference, such as hypothesis 

testing and confidence interval construction. This is because the OLS estimator's 

sampling distribution follows a normal distribution, enabling researchers to make 

robust statistical inferences about the regression coefficients. By the properties of 

the normal distribution, the variable 𝑍, which is defined as: 

 𝑍 =
𝛽̂0−𝛽0

𝜎
𝛽̂0

2        (2.25) 

Where, 𝑍 follows the standard normal distribution, that is, a normal distribution 

with zero mean and unit (= 1) variance. Likewise, 𝑍 for the statistical inference 

about slope parameter can be written as: 

 𝑍 =
𝛽̂1−𝛽1

𝜎
𝛽̂1

2        (2.26) 

 

2.4.9.7. Independence of Estimators 
 

The distributions of 𝛽̂0 and 𝛽̂1 are independent from the distribution of 𝜎̂2. 
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2.4.9.8. Best Unbiased Estimators (BUE) 
 

In regression analysis, 𝛽̂0 and 𝛽̂1 obtained through Ordinary Least Squares (OLS) 

have the minimum variance among all unbiased estimators, making them the most 

precise and reliable choice for estimating the population values, regardless of 

whether the relationship between variables is linear or not. This powerful finding 

by Rao (1965, p. 258) highlights the efficiency of OLS estimators, making them 

the best unbiased estimators in the entire class of estimation techniques. Therefore, 

we can say that the least-squares estimators are best unbiased estimators (BUE); 

that is, they have minimum variance in the entire class of unbiased estimators. 

 

It is important to note that while the normality assumptions enhance the OLS 

estimator's properties, OLS can still provide consistent and valid estimates even 

when the normality assumption is violated, especially in large samples. However, 

adhering to the normality assumptions is crucial when making strong statistical 

inferences and ensuring the reliability of the regression results. Researchers should 

always assess the normality of residuals through diagnostic tests to evaluate the 

appropriateness of the OLS model for their data. 

 

2.4.10. The Method of Maximum Likelihood (ML) 

 

An alternative method of point estimation with stronger theoretical properties than 

Ordinary Least Squares (OLS) is the method of maximum likelihood (ML). The 

method of maximum likelihood, as the name indicates, consists in estimating the 

unknown parameters in such a manner that the probability of observing the given 

𝑌’s is as high (or maximum) as possible.  

 

When assuming that the error terms (𝑢𝑖) are normally distributed, the ML and OLS 

estimators of regression coefficients (𝛽's) are identical, holding true for both simple 

and multiple regressions. However, the ML estimator for the variance (𝜎̂2) is 

slightly biased compared to the unbiased OLS estimator. Nevertheless, as the 

sample size (𝑛) increases, the two estimators of 𝜎̂2 tend to become equal, making 

the ML estimator asymptotically unbiased. Since OLS, along with the assumption 

of normality of ui, equips us with the necessary tools for estimation and hypothesis 

testing in linear regression models, there is no loss for readers opting not to pursue 

the maximum likelihood method due to its slight mathematical complexity. 

 

2.4.11. Statistical Inference in the Linear Regression Model 

 

The realm of statistical inference in the context of the linear regression model is a 

fascinating one, indeed. It is a domain that is rife with complexity and nuance, yet 
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it is also one that offers profound insights into the nature of data and the 

relationships that exist within it. 

 

The crux of statistical inference in linear regression lies in the estimation of the 

parameters of the model. These parameters, often denoted as beta coefficients, are 

the lifeblood of the model, providing the means by which the independent variables 

are related to the dependent variable. The estimation of these parameters is typically 

achieved through the method of least squares, a technique that minimizes the sum 

of the squared residuals, thus ensuring that the model's predictions are as close as 

possible to the observed values. 

 

However, the estimation of parameters is merely the first step in the journey of 

statistical inference. Once the parameters have been estimated, the next step is to 

assess the validity of these estimates. This is where the concept of hypothesis 

testing comes into play. Hypothesis testing is a statistical procedure that allows us 

to make inferences about the population parameters based on the sample data. In 

the context of linear regression, hypothesis testing is often used to determine 

whether the estimated parameters are statistically significant, i.e., whether they are 

different from zero. 

 

In addition to hypothesis testing, another critical aspect of statistical inference in 

linear regression is the construction of confidence intervals. Confidence intervals 

provide a range of values within which the true population parameter is likely to 

fall. They offer a measure of the uncertainty associated with the parameter estimates 

and are a crucial tool for understanding the precision of the estimates. 

Furthermore, the assumptions underlying the linear regression model play a pivotal 

role in statistical inference. These assumptions, which include linearity, 

independence, homoscedasticity, and normality, are essential for the validity of the 

inference procedures. Violations of these assumptions can lead to biased or 

inefficient estimates, thus undermining the reliability of the model's predictions. 
 

Hypothesis testing is a fundamental procedure in statistics that allows us to make 

inferences or draw conclusions about a population based on a sample of data. Here 

are the steps involved in hypothesis testing: 

 

2.4.11.1. Formulate the Hypotheses 
 

The first step in hypothesis testing is to set up the null hypothesis (𝐻0) and the 

alternative hypothesis (𝐻1 or 𝐻𝑎). The null hypothesis is a statement about the 

population that will be tested. The alternative hypothesis is what you might believe 

to be true or hope to prove true. 
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2.4.11.2. Choose the Significance Level (𝜶)  
 

The significance level, also denoted as alpha or 𝛼, is a threshold that determines 

when we reject the null hypothesis. Commonly used values are 0.05 (5%) and 0.01 

(1%). 

 

2.4.11.3. Select the Appropriate Test Statistic 

 

Depending on the nature of the data and the hypothesis, select the appropriate test 

statistic (e.g., Z-score, t-score, F-score, etc.). The test statistics will help us decide 

whether to reject or fail to reject the null hypothesis. 

 

2.4.11.4. Calculate the Test Statistic and Corresponding P-Value 

 

The test statistics are calculated using your sample data. Once the test statistic is 

calculated, you can find the corresponding p-value. The p-value is the probability 

that you would observe a test statistic as extreme as the one calculated, assuming 

the null hypothesis is true. 
 

2.4.11.5. Compare the P-Value to the Significance Level  
 

If the p-value is less than or equal to the significance level, we reject the null 

hypothesis. If the p-value is greater than the significance level, we fail to reject (or 

retain) the null hypothesis. 

 

2.4.11.6. Make a Decision and Interpret the Result 
 

Based on the comparison, we decide about the hypotheses. If we rejected the null 

hypothesis, we could say that our sample provides enough evidence to support the 

alternative hypothesis. If we failed to reject the null hypothesis, we do not have 

enough evidence to support the alternative hypothesis. Remember, failing to reject 

the null hypothesis does not prove it true. It merely suggests that we do not have 

strong enough evidence against it. Similarly, rejecting the null hypothesis does not 

prove the alternative hypothesis; it suggests that the alternative may be true, and 

the null is unlikely. 

 

In conclusion, statistical inference in the linear regression model is a multifaceted 

process that involves the estimation of parameters, hypothesis testing, the 

construction of confidence intervals, and the verification of model assumptions. It 

is a process that requires a deep understanding of statistical principles and a keen 

eye for detail. Yet, for those who are willing to delve into its intricacies, it offers a 

powerful tool for making sense of the world around us. 
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2.4.12. Analysis of Variance of the Linear Regression Model 
 

Analysis of Variance (ANOVA) in a Linear Regression Model is a statistical 

method that helps us understand how much of the variation in our data can be 

explained by the model we've built. It's like a report card for our model, telling us 

how well it's doing. 

 

The ANOVA table is a summary of this analysis. It breaks down the total variation 

in our data (Total Sum of Squares) into the part that our model can explain 

(Regression Sum of Squares) and the part that remains unexplained (Residual or 

Error Sum of Squares). Degrees of freedom, another part of the table, tell us how 

many values in our calculations are free to vary. It's a bit like knowing how many 

pieces of a puzzle we have left to place. 

 

Table 2.1: ANOVA Table for the Two-variable Regression Model 

Source of Variation Sum of Squares df Mean sum of Squares 

Due to regression (ESS) ∑ 𝑦̂𝑖
2 = 𝛽̂1

2 ∑ 𝑋𝑖
2  1 ∑ 𝑦̂𝑖

2 = 𝛽̂1
2 ∑ 𝑋𝑖

2  

Due to residuals (RSS) ∑ 𝑢̂𝑖
2  𝑛 − 2 ∑ 𝑢𝑖

2

𝑛−2
= 𝜎̂2  

TSS ∑ 𝑦𝑖
2  𝑛 − 1  

 

The mean squares are calculated by dividing each sum of squares by its 

corresponding degrees of freedom. They help us understand the average variation 

explained by the model and the average variation that remains unexplained. Finally, 

the F-statistic is a ratio of the mean square for regression to the mean square for 

error. It gives us a measure of how significant our model is overall. If our model is 

doing a good job, the F-statistic will be large, suggesting that our model is 

explaining a lot of the variation in the data. 

In short, ANOVA in a Linear Regression Model is a tool that helps us understand 

how well our model is doing in explaining the variation in our data. 
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2.5. Self-Assessment Questions 
 

• What is the main purpose of studying econometrics, and how does it 

contribute to understanding economic relationships? 

• Explain the concept of the Population Regression Function (PRF) and its 

significance in regression analysis. 

• Why is the assumption of normality of the stochastic disturbance term 

essential in Ordinary Least Squares (OLS) regression? How does it impact 

the OLS estimators' properties? 

• Describe the method of OLS and its advantages as an estimator in linear 

regression models. 

• List and explain the assumptions of the Ordinary Least Squares method. 

How do violations of these assumptions affect the reliability of OLS 

estimates? 

• Discuss the properties of the Least Squares method and why it is considered 

a powerful estimation technique in econometrics. 

• What are the measures of goodness of fit, and how do they help evaluate 

the performance of a regression model? 

• Explain the significance of the probability distribution of the disturbance 

term in regression analysis. How does the choice of distribution affect the 

model's validity? 

• Compare and contrast the Ordinary Least Squares (OLS) and Maximum 

Likelihood (ML) methods for estimating regression coefficients. Under 

what conditions do they yield identical results? 

• How does statistical inference in the linear regression model enable 

researchers to draw meaningful conclusions from data? What role does the 

analysis of variance play in understanding the contributions of explanatory 

variables in the model? 
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3.1. INTRODUCTION 
 

This unit explores the comprehensive subject of multiple regression models. Our 

journey will take us from simple to complex applications, beginning with models 

that incorporate two explanatory variables. We will delve into the heart of statistical 

inference within these models, exploring the various types of hypothesis testing. 

This includes tests of individual regression coefficients, the overall significance of 

our models, and the equivalency of different coefficients. Further, we will 

scrutinize the stability and functional form of our models, as well as specific 

constraints that may be placed upon them. 

 

The interpretation of regression coefficients forms an essential part of our 

exploration, providing crucial insights into the relationships between our predictor 

and response variables. Equally important is our investigation into the relationship 

between partial and multiple correlation coefficients, enabling a more profound 

understanding of the intricate interdependencies among variables. Our focus will 

then shift to predictive applications of multiple regression models, exploring how 

they can be harnessed to predict dependent variable values based on a set of 

independent variables. Concluding our exploration, we will discuss the multiple 

coefficient of determination, a key metric indicating how effectively our regression 

model can predict outcomes. 

 

Throughout this unit, our objective is to enhance your understanding of multiple 

regression models, empowering you to explore and interpret complex relationships 

within your data. 

 

3.2. OBJECTIVES 
 

While reading this unit, a student could aim to achieve the following objectives: 

 

• understand the Concept of Multiple Regression Models: The unit begins 

by introducing the concept of multiple regression models using two 

explanatory variables. The student should aim to grasp how multiple 

independent variables can be incorporated into a regression model. 
 

• master the Techniques of Statistical Inference: A significant portion of 

the chapter is dedicated to various forms of statistical inference. The 

student's objective should be to learn how to conduct different hypothesis 

tests in the context of multiple regression models, including tests on 

individual regression coefficients, the overall significance of the model, 

equality of coefficients, and more. 
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• interpret Regression Coefficients: Understanding the interpretation of 

regression coefficients in a multiple regression model is crucial. The student 

should aim to develop the skill to interpret these coefficients accurately. 
 

• understand Partial and Multiple Correlation: A deep understanding of 

the correlation among variables is crucial in multiple regression models. 

The student should aim to understand the relationship between partial and 

multiple correlation coefficients. 
 

• develop Prediction Skills: The ability to make predictions based on a 

multiple regression model is an essential skill in many fields. The student 

should aim to learn how to use the model for prediction purposes. 
 

• understand the Multiple Coefficient of Determination: The student 

should aim to understand what the multiple coefficient of determination is, 

how it's calculated, and how it can be used to evaluate the effectiveness of 

a multiple regression model. 

 

By achieving these objectives, a student will develop a solid understanding of 

multiple regression models and gain valuable skills that can be applied in various 

research and professional contexts. 
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3.3. Major Topics 
 

• A Model with Two Explanatory Variables 

• Statistical Inference in The Multiple Regression Model 

• Interpretation of the Regression Coefficients 

• Partial and Multiple Correlation coefficients and their Relationship 

• Prediction in the Multiple Regression Model 

• The Multiple Coefficient of Determination 

 

3.4. Summary of the Units 
 

3.4.1. A Model with Two Explanatory Variables  

 

Building on the concept of simple regression models, a multiple regression model 

expands its scope to include more than one explanatory variable. For instance, 

consider a model with two explanatory variables: 

𝑌 =  𝛽0  + 𝛽1𝑋1  +  𝛽2𝑋2  +  𝑢    (3.1) 

This equation represents a model where 𝑌, the dependent variable, is explained by 

two independent variables, 𝑋1 and 𝑋2, where 𝛽0 is the 𝑌-intercept, 𝛽1 and 𝛽2 are 

the slope coefficients associated with 𝑋1 and 𝑋2 respectively, and u is the error 

term. The coefficients 𝛽1 and 𝛽2 depict the average change in 𝑌 for a unit change 

in 𝑋1 and 𝑋2, respectively, holding the other variable constant. This notion of 

"ceteris paribus" (all other things being equal) is essential for understanding the 

relationship between multiple independent variables and the dependent variable. 

 

Under the framework of the classical linear regression model (CLRM), 

assumptions are same as of simple linear regression model. Hence, we assume the 

following (detail of each assumption can be seen in section 2.4.4): 

 

• Multiple linear regression model is a linear model (linear in the parameters. 

• Fixed 𝑋 values or 𝑋 values are independent of the error term. Here, this 

means, we require: 

𝐶𝑜𝑣 (𝑢𝑖 , 𝑋1𝑖) = 𝐶𝑜𝑣 (𝑢𝑖, 𝑋2𝑖) = 0   (3.2) 

• Zero mean of value of the disturbances 𝑢𝑖 , 

𝐸(𝑢𝑖|𝑋1𝑖 , 𝑋2𝑖) = 0 for each 𝑖   (3.3) 

• Constant variance of 𝑢𝑖 or homoskedastic 

𝑉𝑎𝑟 (𝑢𝑖) = 𝜎2     (3.4) 

• There will be no autocorrelation or serial correlation, between the 

disturbances. 

𝐶𝑜𝑣 (𝑢𝑖 , 𝑢𝑗) = 0  𝑖 ≠ 𝑗   (3.5) 



42 

 

• The number of observations 𝑛 must be greater than the number of 

parameters to be estimated. 

• There must be variation in the values of the 𝑋 variables. 

• In a multiple regression model, this assumption ensures that the independent 

variables are not perfectly linearly related. In other words, no independent 

variable is a perfect linear function of other explanatory variables. If this 

assumption is violated, it would be impossible to separate out the individual 

effects of the independent variables on the dependent variable, making it 

impossible to estimate the individual parameters. Mathematically, this 

assumption can be expressed in terms of the covariance between the 

explanatory variables: 

𝐶𝑜𝑣 (𝑋1, 𝑋2) = 0     (3.6) 

Keep in mind that we are talking only about perfect linear relationships 

between two or more variables. Multicollinearity does not rule out nonlinear 

relationships between variables. 

• There is no specification bias and the model is correctly specified. 

 

To find the OLS estimators, let us first write the sample regression function (SRF) 

corresponding to the PRF of equation (3.1) as follows: 

 𝑌𝑖  =  𝛽̂0  +  𝛽̂1𝑋1𝑖  +  𝛽̂2𝑋2𝑖  +  𝑢̂𝑖    (3.7) 

Where 𝑢̂𝑖 is the residual term, the sample counterpart of the stochastic disturbance 

term 𝑢𝑖. The OLS procedure consists of choosing the values of the unknown 

parameters so that the residual sum of squares (RSS) ∑ 𝑢̂𝑖
2 is as small as possible. 

Symbolically, 

min ∑ 𝑢̂𝑖
2 = 𝑚𝑖𝑛 ∑(𝑌𝑖 − 𝛽̂0 −  𝛽̂1𝑋1𝑖 −  𝛽̂2𝑋2𝑖))

2
  (3.8) 

The most straightforward procedure to obtain the estimators that will minimize 

equation (3.8) is to differentiate it with respect to the unknowns, set the resulting 

expressions to zero, and solve them simultaneously. This procedure gives the 

following normal equations: 

∑ 𝑌𝑖  =  𝑛 𝛽̂0  +  𝛽̂1 ∑ 𝑋1𝑖  + 𝛽̂2 ∑ 𝑋2𝑖   (3.9) 

∑ 𝑌𝑖𝑋1𝑖 = 𝛽̂0 ∑ 𝑋1𝑖  +  𝛽̂1 ∑ 𝑋1𝑖
2  +  𝛽̂2 ∑ 𝑋1𝑖 𝑋2𝑖  (3.10) 

∑ 𝑌𝑖𝑋2𝑖 = 𝛽̂0 ∑ 𝑋2𝑖  +  𝛽̂1 ∑ 𝑋1𝑖 𝑋2𝑖  +  𝛽̂2 ∑ 𝑋2𝑖
2   (3.11) 

Solving these equations, simultaneously will give us OLS estimators of parameters 

𝛽0 , 𝛽1 , 𝛽2. Formulas for the OLS estimators are: 

 𝛽̂0 = 𝑌̅ − 𝛽̂1𝑋̅1 − 𝛽̂2𝑋̅2     (3.12) 

 𝛽̂1 =
(∑ 𝑦𝑖𝑥1𝑖)(∑ 𝑋2𝑖

2 )−(∑ 𝑦𝑖𝑥2𝑖)(∑ 𝑥1𝑖𝑥2𝑖)

(∑ 𝑥1𝑖
2 )(∑ 𝑥2𝑖

2 )−(∑ 𝑥1𝑖𝑥2𝑖)2     (3.13) 

 𝛽̂2 =
(∑ 𝑦𝑖𝑥2𝑖)(∑ 𝑋1𝑖

2 )−(∑ 𝑦𝑖𝑥1𝑖)(∑ 𝑥1𝑖𝑥2𝑖)

(∑ 𝑥1𝑖
2 )(∑ 𝑥2𝑖

2 )−(∑ 𝑥1𝑖𝑥2𝑖)2
    (3.14) 

About the OLS estimators, it should be noted that: 



43 

 

• Equations (3.13) and (3.14) are symmetrical in nature because one can be 

obtained from the other by interchanging the roles of 𝑋1and 𝑋2. 

• The denominators of these two equations are identical 

• The three-variable case is a natural extension of the two-variable case 

The unbiased estimator of 𝜎2 is given by: 

 𝜎̂2 =
∑ 𝑢𝑖

2

𝑛−3
       (3.15) 

The degrees of freedom are now (𝑛 −  3) because in estimating 𝑢̂𝑖
2 we must first 

estimate 𝛽0, 𝛽1, and 𝛽2, which consume 3 df. 

 

3.4.2. Statistical Inference in the Multiple Regression Model 
 

After surpassing the realm of the basic two-variable linear regression model, 

hypothesis testing takes on various intriguing forms, exemplified by the following: 

 

3.4.2.1. Testing Hypotheses about an Individual Partial Regression Coefficient 
 

The procedure of hypothesis testing for individual parameters in multiple linear 

regression model is same as of hypothesis testing for individual parameters in 

simple linear regression models (discussed in previous unit). Following test 

statistics will be used to check the significance of 𝛽0, 𝛽1, and 𝛽2. 

 𝑡 =
𝛽̂0−𝛽0

𝑠𝑒(𝛽̂0)
       (3.16)  

 𝑡 =
𝛽̂1−𝛽1

𝑠𝑒(𝛽̂1)
       (3.17) 

 𝑡 =
𝛽̂2−𝛽2

𝑠𝑒(𝛽̂2)
       (3.18) 

It follows the 𝑡-distribution with 𝑛 –  3 df. 

 

3.4.2.2. Testing the Overall Significance of the Estimated Regression Model 

 

In this case, the null hypothesis is a joint hypothesis that 𝛽1, and 𝛽2 are jointly or 

simultaneously equal to zero. Following is the hypothesis of overall significance of 

the observed or estimated regression line: 

 𝐻0: 𝛽1 = 𝛽2 = 0 

We cannot use the usual 𝑡-test to test the joint hypothesis that the true partial 

coefficients are zero simultaneously. However, this joint hypothesis can be tested 

by the analysis of variance (ANOVA) technique. Under the assumption of normal 

distribution of 𝑢i, following test statistics can be employed: 

 F =
(𝛽̂1 ∑ 𝑦𝑖𝑥1𝑖+𝛽̂2 ∑ 𝑦𝑖𝑥2𝑖) 2⁄

∑ 𝑢𝑖
2 (𝑛−3)⁄

=
𝐸𝑆𝑆/𝑑𝑓

𝑅𝑆𝑆/𝑑𝑓
    (3.19) 

It follows F-distribution with 2 and 𝑛 − 3 d.f. The ANOVA table in case of multiple 

regression model is as follow: 
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Table 3.1: ANOVA Table for the Three-variable Regression Model 
 

Source of Variation Sum of Squares d.f. Mean sum of Squares 

Due to regression 

(ESS) 
𝛽̂1 ∑ 𝑦𝑖𝑥1𝑖 +

𝛽̂2 ∑ 𝑦𝑖𝑥2𝑖  

2 𝛽̂1 ∑ 𝑦𝑖𝑥1𝑖+𝛽̂2 ∑ 𝑦𝑖𝑥2𝑖

2
  

Due to residuals (RSS) ∑ 𝑢̂𝑖
2  𝑛

− 3 

∑ 𝑢𝑖
2

𝑛−3
= 𝜎̂2  

TSS ∑ 𝑦𝑖
2  𝑛

− 1 

 

 

Generally, to test the overall significance of the regression with k-variable 

regression model: 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽k−1𝑋k−1𝑖 + 𝑢𝑖   (3.20) 

Following will be the hypothesis: 

 𝐻0:  𝛽2 = 𝛽3 = 𝛽4 = ⋯ = 𝛽k−1 = 0 

 𝐻1: not all slope coefficients are simultaneously zero 

The hypothesis can be tested using the following test-statistic: 

 𝐹 =
𝐸𝑆𝑆/𝑑𝑓

𝑅𝑆𝑆/𝑑𝑓
=

(𝑅2) (𝑘−1)⁄

(1−𝑅2) (𝑛−𝑘)⁄
     (3.21) 

If 𝐹 > 𝐹𝛼(𝑘−1,𝑛−𝑘), reject 𝐻0, where 𝐹𝛼(𝑘−1,𝑛−𝑘) is the critical 𝐹 value at the 𝛼 level 

of significance and (𝑘 − 1) numerator df and (𝑛 − 𝑘) denominator df. 

Alternatively, if the P-value of the F obtained from equation (3.21) is sufficiently 

low, reject 𝐻0. 

 

3.4.2.3. Testing that Two or More Coefficients are Equal to One Another 

 

Suppose in the multiple regression: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝑢𝑖   (3.20) 

We want to test the hypothesis that the two slope coefficients 𝛽2 and 𝛽3 are equal: 

𝐻0:  𝛽2 = 𝛽3  or (𝛽2 − 𝛽3) = 0 

𝐻0:  𝛽2 ≠ 𝛽3  or (𝛽2 − 𝛽3) ≠ 0   (3.21) 

Under the classical assumptions it can be shown that it follows a t-distribution. So 

we can use the following test-statistic: 

 𝑡 =
(𝛽̂2−𝛽̂3)−(𝛽2−𝛽3)

𝑠𝑒(𝛽̂2−𝛽̂3)
=

(𝛽̂2−𝛽̂3)−(𝛽2−𝛽3)

√𝑣𝑎𝑟(𝛽̂2)+𝑣𝑎𝑟(𝛽̂3)−2𝑐𝑜𝑣(𝛽̂2,𝛽̂3)

  (3.22) 

Now, if the computed value of t exceeds the critical t-value at the designated level 

of significance for given df, then we can reject 𝐻0, otherwise, we do not reject 𝐻0. 

Alternatively, if the p-value of the t-statistic is reasonably low, one can reject the 

null hypothesis. It should be noted that when we say that a p-value is low or 

reasonably low, we mean that it is less than the significance level, such as 10, 5, or 

1 percent. 
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3.4.2.4. Testing that the Partial Regression Coefficients Satisfy Certain Restrictions 

 

On certain occasions, economic theory might propose that the coefficients in a 

regression model adhere to specific linear equality restrictions. For example, let's 

consider the Cobb-Douglas production function. 

𝑌𝑖 = 𝛽0𝑋1𝑖
𝛽1𝑋2𝑖

𝛽2𝑒𝑢𝑖      (3.23) 

Where 𝑌 represents output, 𝑋1 represents labor inputs and 𝑋2 represents capital 

input. In the log form, equation becomes: 

ln 𝑌 = 𝛼0 + 𝛽1 ln 𝑋1𝑖 + 𝛽2 ln 𝑋2𝑖 + 𝑢𝑖   (3.24) 

Where 𝛼0 = ln 𝛽0, now if there are constant returns to scale (equi-proportional 

change in output for an equi-proportional change in the inputs), economic theory 

would suggest that: 

𝛽1 + 𝛽2 = 1        (3.25) 

This is an example of linear equality restriction. One approach is to check 

the restriction is by t-test. In this estimate equation (3.24) without taking into 

account the restriction given in equation (3.25), This is called the unrestricted or 

unconstrained regression. Following t-test can be used to test the restriction given 

in equation (3.25): 

𝑡 =
(𝛽̂1+𝛽̂2)−(𝛽1+𝛽2)

𝑠𝑒(𝛽̂2+𝛽̂3)
=

(𝛽̂1+𝛽̂2)−1

√𝑣𝑎𝑟(𝛽̂2)+𝑣𝑎𝑟(𝛽̂3)+2𝑐𝑜𝑣(𝛽̂2,𝛽̂3)

  (3.26) 

If the t-value from equation (3.26) exceeds the critical t-value at the chosen level 

of significance, we reject the hypothesis of constant returns to scale, otherwise we 

do not reject it. 

 

The t-test is based on the estimation of unrestricted model, whereas in another 

approach, test can be applied by incorporating the restriction (𝛽1 = 1 − 𝛽2 or 𝛽2 =
1 − 𝛽1). Using any of these restriction, equation (3.24) can be written as: 

ln 𝑌 = 𝛼0 + (1 − 𝛽2) ln 𝑋1𝑖 + 𝛽2 ln 𝑋2𝑖 + 𝑢𝑖 

ln 𝑌 − ln 𝑋1𝑖 = 𝛼0 − 𝛽2 ln 𝑋1𝑖 + 𝛽2 ln 𝑋2𝑖 + 𝑢𝑖 

ln 𝑌 − ln 𝑋1𝑖 = 𝛼0 + 𝛽2(ln 𝑋2𝑖 − ln 𝑋1𝑖) + 𝑢𝑖 

ln(𝑌 / 𝑋1𝑖) = 𝛼0 + 𝛽2 ln(𝑋2𝑖 /𝑋1𝑖) + 𝑢𝑖   (3.27) 

Where 𝑌/ 𝑋1𝑖 represents the output to labor ratio and 𝑋2𝑖/𝑋1𝑖 represents the capital 

labor ratio. To test the restriction presented in equation (3.25), we estimate the 

unrestricted (presented in equation 3.24) and restricted model (presented in 

equation 3.27). We obtain residual sum of square (RSS) from both regressions. F-

test under the following test-statistic can be applied to check the restriction: 

𝐹 =
(𝑅𝑆𝑆𝑅−𝑅𝑆𝑆𝑈𝑅)/𝑚

𝑅𝑆𝑆𝑈𝑅/(𝑛−𝑘)
=

(∑ 𝑢𝑅
2 −∑ 𝑢𝑈𝑅

2 )/𝑚

∑ 𝑢𝑈𝑅
2 (𝑛−𝑘)⁄

=
(𝑅𝑈𝑅

2 −𝑅𝑅
2 )/𝑚

(1−𝑅𝑈𝑅
2 )/(𝑛−𝑘)

   (3.28) 

Where ∑ 𝑢̂𝑅
2  presents the RSS of restricted model, ∑ 𝑢̂𝑈𝑅

2  represents the RSS of 

unrestricted model, 𝑚 represents the number of linear restrictions (1 in the present 
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example), 𝑅𝑅
2 represents the 𝑅2 value obtained from restricted regression, and 𝑅𝑈𝑅

2  

represents the  𝑅2 value obtained from unrestricted regression. Hence if calculated 

value of F-statistics is greater than critical value of F then we will null hypothesis 

of constant returns to scale.  

 

3.4.2.5. Testing the Stability of the Regression Model over time or in Different 

 Cross-Sectional Units 
 

In the regression with time series data, there may be a structural change in the 

relationship between the regressand  𝑌 and the regressors. By structural change, we 

mean that the values of the parameters of the model do not remain the same through 

the entire time period. Now the possible differences, that is, structural changes, may 

be caused by differences in the intercept or the slope coefficient or both. Chow test 

developed by Chow (1960) can be used to check test structural break. Suppose the 

data is divided in to groups with 𝑛1 observations in the first group and 𝑛2 

observations in the second group. So, we can have three possible regressions: 

𝑌𝑡 = 𝜆0 + 𝜆1𝑋𝑡 + 𝑢1𝑡   for 𝑛1 observations  (3.29) 

𝑌𝑡 = 𝛾0 + 𝛾1𝑋𝑡 + 𝑢2𝑡   for 𝑛2 observations  (3.30) 

𝑌𝑡 = 𝛼0 + 𝛼1𝑋𝑡 + 𝑢𝑡   for 𝑛1 + 𝑛2 observations (3.31) 

 

Chow test assumes that: 
 

• 𝑢1𝑡~𝑁(0, 𝜎2) and  𝑢2𝑡~𝑁(0, 𝜎2). That is, the error term in the subperiod 

regressions are normally distributed with the same (homoscedastic) 

variance 𝜎2. 

• The two error terms 𝑢1𝑡 and 𝑢2𝑡 are independently distributed.  

 

The mechanics of Chow-test are as follows: 
 

• Estimate regression (3.31) which if there is no parametric instability, and 

obtain 𝑅𝑆𝑆3 with df (𝑛1 + 𝑛2 − 𝑘), where 𝑘 is the number of parameters 

estimated. We call 𝑅𝑆𝑆3 the restricted residual sum of squares (𝑅𝑆𝑆𝑅) 

because it is obtained by imposing restriction 𝜆0 = 𝛾0 and 𝜆1 = 𝛾1.  

• Estimate regression (3.29) and obtain its residual sum of square, 𝑅𝑆𝑆1 with 

df (𝑛1 − 𝑘). 

• Estimate regression (3.30) and obtain its residual sum of square, 𝑅𝑆𝑆2 with 

df (𝑛2 − 𝑘). 

• Since the two sets of samples are deemed independent, we can add 𝑅𝑆𝑆1 

and 𝑅𝑆𝑆2 to obtain what may be called the unrestricted residual sum of 

squares (𝑅𝑆𝑆UR = 𝑅𝑆𝑆1 + 𝑅𝑆𝑆2), with df (𝑛1 + 𝑛2 − 2𝑘). 

• Now the idea behind the Chow test is that if in fact there is no structural 

change (i.e., regressions [3.29] and [3.30] are essentially the same), then the 
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𝑅𝑆𝑆R and 𝑅𝑆𝑆UR should not be statistically different. Therefore, if we form 

the following ratio: 

𝐹 =
(𝑅𝑆𝑆𝑅−𝑅𝑆𝑆𝑈𝑅)/𝑘

𝑅𝑆𝑆𝑈𝑅/(𝑛1+𝑛2−2𝑘)
     (3.32) 

then Chow has shown that under the null hypothesis the regressions (3.29) 

and (3.30) are (statistically) the same (i.e., no structural change or break) 

and the 𝐹 ratio given above follows the 𝐹 distribution with 𝑘 and (𝑛1 +
𝑛2 − 2𝑘) df in the numerator and denominator, respectively. 

• If the computed 𝐹 value does not exceed the critical 𝐹 value at chosen level 

of significance then we do not reject the null hypothesis of parameter 

stability (i.e., no structural change). In this case we may be justified in using 

the pooled regression (3.31). 

There are some caveats about the Chow test that must be kept in mind: 

• To conduct the test successfully, it is crucial to ensure that the underlying 

assumptions are met. For instance, it is necessary to verify whether the error 

variances in regressions (3.29) and (3.30) are equal. 

• The Chow test will only indicate whether there is a difference between the 

two regressions (3.29) and (3.30), but it will not specify whether the 

difference is due to the intercepts, the slopes, or both. 

• The Chow test relies on the assumption that we have knowledge of the 

point(s) of structural break. Nevertheless, if determining the actual 

occurrence of the structural change becomes challenging, alternative 

methods may need to be employed. 

 

3.4.2.6. Testing the Functional Form of the Regression Model 

 

The decision of whether to opt for a linear regression model or a log-linear 

regression model remains an enduring question in empirical analysis. To address 

this, we can employ a test proposed by MacKinnon, White, and Davidson (1983), 

commonly referred to as the MWD test, which helps us make a choice between the 

two models. A similar test is proposed in Bera and Jarque (1982). For the test, 

following is the null and alternative hypothesis: 

𝐻0: Linear Model: 𝑌 is a linear function of regressors, the 𝑋’s 

𝐻1: Log-Linear Model: ln 𝑌 is a linear function of logs of regressors, the 

logs of 𝑋’s 

The MWD test involve the following steps: 

• Estimate the linear model and obtain the estimated values of 𝑌; Call them 

𝑌𝑓 (i.e. 𝑌̂). 

• Estimate the log-linear model and obtain the estimated values of ln 𝑌; call 

them ln 𝑓 (i.e. ln 𝑌̂). 

• Obtain 𝑍1 = (ln 𝑌𝑓 − ln 𝑓) = (ln 𝑌̂ − ln 𝑌̂). 
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• Regress 𝑌 on 𝑋’s and 𝑍1 obtained in previous step. Reject 𝐻0 if the 

coefficient of 𝑍1 is statistically significant by the usual t-test. 

• Obtain 𝑍2 = (𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑜𝑓 ln 𝑌𝑓 − ln 𝑓) = (𝑎𝑛𝑡𝑖𝑙𝑜𝑔 𝑜𝑓 ln 𝑌̂ − ln 𝑌̂).  

• Regress log of 𝑌 on the log’s of 𝑋’s and 𝑍2. Reject 𝐻1 if the coefficient of 

𝑍2 is statistically significant by the usual t-test. 

 

3.4.3. Interpretation of the Regression Coefficients  
 

To comprehend the model's interpretation, we initially examined how child 

mortality (𝐶𝑀) behaves concerning per capita 𝐺𝑁𝑃 (𝑃𝐺𝑁𝑃), observing a negative 

impact of 𝑃𝐺𝑁𝑃 on 𝐶𝑀, as anticipated. Now, let's introduce female literacy, 

represented by the female literacy rate (𝐹𝐿𝑅). We also expect 𝐹𝐿𝑅 to have a 

negative influence on 𝐶𝑀. When incorporating both variables into our model, we 

must isolate and estimate the individual (partial) regression coefficients of each 

regressor to understand their respective effects. 

 𝐶𝑀𝑖 = 𝛽0 + 𝛽1𝑃𝐺𝑁𝑃𝑖 + 𝛽2𝐹𝐿𝑅𝑖 + 𝑢𝑖   (3.32) 

By using the data of different countries, consider following is the estimated model: 

 𝐶𝑀̂𝑖 = 263.6416 − 0.0056𝑃𝐺𝑁𝑃𝑖 − 2.2316𝐹𝐿𝑅𝑖  (3.33) 

 𝑠𝑒   = (11.5932)    (0.0019)               (0.2099) 

 𝑅2 = 0.7077  𝑅̅2 = 0.6981  

Let's now interpret these regression coefficients. The value of -0.0056 represents 

the partial regression coefficient of PGNP, indicating that while holding the 

influence of FLR constant, an increase of one dollar in per capita GNP, on average, 

results in a decrease of 0.0056 units in child mortality. To provide a more 

economically meaningful interpretation, if per capita GNP rises by a thousand 

dollars, on average, the number of deaths of children under the age of 5 decreases 

by approximately 5.6 per thousand live births. 

 

The coefficient of -2.2316 reveals that while keeping the influence of PGNP 

constant, an increase of one percentage point in the female literacy rate leads to an 

average reduction of about 2.23 deaths per thousand live births for children under 

the age of 5. The intercept value, approximately 263, can be mechanically 

interpreted as the child mortality rate when both PGNP and FLR are set to zero. 

However, it's essential to approach this interpretation cautiously. It suggests that if 

both PGNP and FLR were at zero, the child mortality rate would be around 263 

deaths per thousand live births. Naturally, such an interpretation should be taken 

with caution, as it simply implies that if both regressors were absent, the child 

mortality rate would be relatively high, which aligns with practical expectations. 

The R-squared value of approximately 0.71 indicates that about 71 percent of the 

variation in child mortality can be explained by PGNP and FLR, which is relatively 

high considering that the maximum possible value for R-squared is 1. In summary, 
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the regression results appear to be sensible and provide valuable insights into the 

relationship between the variables. 

 

Before moving forward, let's consider the scenario where we want to determine the 

effect on the child mortality rate when both PGNP and FLR are increased 

simultaneously. Suppose per capita GNP increases by one dollar, and at the same 

time, the female literacy rate goes up by one percentage point. To ascertain the 

impact of this simultaneous change on the child mortality rate, we simply need to 

multiply the coefficients of PGNP and FLR by their respective proposed changes 

and add the resulting terms. In our specific example, this calculation yields the 

following result: 

−0.0056(1) − 2.2316(1) = −2.2372 

That is, as a result of this simultaneous change in PGNP and FLR, the number of 

deaths of children under age 5 would go down by about 2.24 deaths. 

 

Now if the regression is carried out with the standardized variables (a variable is 

said to standardized if it is expressed in terms of deviation from its mean and 

divided by its standard deviation). Consider following is the estimated model with 

standardized variables: 

𝐶𝑀̂𝑖
∗ = −0.2026𝑃𝐺𝑁𝑃𝑖

∗ − 0.7639𝐹𝐿𝑅𝑖
∗   (3.34) 

𝑠𝑒   =    (0.0713)               (0.0713) 

𝑅2 = 0.7077 

Not that variables with * represent standardized variables and in model with 

standardized variables, there is no intercept. From this regression analysis, you can 

observe that while keeping FLR constant, a one-standard-deviation increase in 

PGNP results, on average, in a 0.2026 standard deviation decrease in CM. 

Likewise, holding PGNP constant, a one-standard-deviation increase in FLR leads, 

on average, to a 0.7639 standard deviation decrease in CM. In relative terms, female 

literacy has a more significant impact on child mortality than per capita GNP. This 

highlights the advantage of using standardized variables since standardization 

equalizes all variables by giving them zero means and unit variances, allowing for 

a fair comparison of their respective impacts. 

 

3.4.4. Partial and Multiple Correlation Coefficients and their Relationship  
 

Coefficient of correlation 𝑟 as a measure of the degree of linear association between 

two variables. For the three-variable regression model we can compute three 

correlation coefficients: 𝑟12 (correlation between 𝑌 and 𝑋2), 𝑟13 (correlation 

coefficient between 𝑌 and 𝑋3), and 𝑟23 (correlation coefficient between 𝑋2 and 𝑋3); 

notice that we are letting the subscript 1 represent 𝑌 for notational convenience. 

These correlation coefficients are called gross or simple correlation coefficients, or 
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correlation coefficients of zero order. These coefficients can be computed using the 

formula: 

 𝑟12 =
𝑛 ∑ 𝑋2𝑖𝑌𝑖−(∑ 𝑋2𝑖)(∑ 𝑌𝑖)

√[(𝑛 ∑ 𝑋2𝑖
2 −(∑ 𝑋2𝑖)2)][(𝑛 ∑ 𝑌𝑖

2−(∑ 𝑌𝑖)2)]

  

 𝑟13 =
𝑛 ∑ 𝑋3𝑖𝑌𝑖−(∑ 𝑋3𝑖)(∑ 𝑌𝑖)

√[(𝑛 ∑ 𝑋3𝑖
2 −(∑ 𝑋3𝑖)2)][(𝑛 ∑ 𝑌𝑖

2−(∑ 𝑌𝑖)2)]

 

 𝑟23 =
𝑛 ∑ 𝑋2𝑖𝑋3𝑖−(∑ 𝑋2𝑖)(∑ 𝑋3𝑖)

√[(𝑛 ∑ 𝑋2𝑖
2 −(∑ 𝑋2𝑖)2)][(𝑛 ∑ 𝑋3𝑖

2 −(∑ 𝑋3𝑖)2)]

    (3.35) 

Simple correlation lies between the limits of −1 and +1; that is, −1 ≤ 𝑟 ≤ 1. In 

general, 𝑟12 is not likely to reflect the true degree of association between 𝑌 and 𝑋2 

in the presence of 𝑋3. As a matter of fact, it is likely to give a false impression of 

the nature of association between 𝑌 and 𝑋2. Therefore, what we need is a correlation 

coefficient that is independent of the influence, if any, of 𝑋3 on 𝑋2 and 𝑌. Such a 

correlation coefficient can be obtained and is known appropriately as the partial 

correlation coefficient. Conceptually, it is similar to the partial regression 

coefficient. We define 𝑟12.3 as partial correlation coefficient between 𝑌 and 𝑋2, 

holding 𝑋3 constant, 𝑟13.2 as partial correlation coefficient between 𝑌 and 𝑋3, 

holding 𝑋2 constant, 𝑟23.1 as partial correlation coefficient between 𝑋2 and 𝑋3, 

holding 𝑋2 constant. These partial correlations can be easily obtained from the 

simple or zero-order, correlation coefficients as follows: 

𝑟12.3 =
𝑟12−𝑟13𝑟23

√(1−𝑟13
2 )(1−𝑟23

2 )
      

𝑟13.2 =
𝑟13−𝑟12𝑟23

√(1−𝑟12
2 )(1−𝑟23

2 )
       

𝑟23.1 =
𝑟23−𝑟12𝑟13

√(1−𝑟12
2 )(1−𝑟13

2 )
       (3.36) 

The above partial correlations are called first-order correlation coefficients. In the 

two variable case 𝑟 measures the degree of (linear) association between the 

dependent variable 𝑌 and the single explanatory variable 𝑋. Beyond the two-

variable case, we observe the following: 

• Even if 𝑟12 = 0, 𝑟12.3 will not be zero unless 𝑟13 or 𝑟23 or both are zero. 

• If 𝑟12 = 0, and 𝑟13 and 𝑟23 are nonzero and are of the same sign, 𝑟12.3 will 

be negative, whereas if they are of the opposite signs, it will be positive. 

• The terms 𝑟12.3 and 𝑟12 (and similar comparisons) need not have the same 

sign. 

• In the two-variable case we have seen that 𝑟2 lies between 0 and 1. 

Similarly, for partial correlations we can write: 

0 ≤ 𝑟12
2 + 𝑟13

2 + 𝑟23
2 − 2𝑟12𝑟13𝑟23 ≤ 1 
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• The fact that 𝑌 and 𝑋3 and 𝑋2 and 𝑋3 are uncorrelated (𝑟12 = 𝑟23 = 0) does 

not mean that 𝑌 and 𝑋2 are uncorrelated. 

The term 𝑟12.3
2  may be called the coefficient of partial determination and may be 

interpreted as the proportion of the variation in 𝑌 not explained by the variable 𝑋3 

that has been explained by the inclusion of 𝑋2 into the model. Further, the 

relationships between 𝑅2 with simple correlation coefficients and partial 

correlation coefficients can be expressed as: 

𝑅2 =
𝑟12

2 +𝑟13
2 −2𝑟12𝑟13𝑟23

1−𝑟23
2   

𝑅2 = 𝑟12
2 + (1 − 𝑟12

2 )𝑟13.2
2   

𝑅2 = 𝑟13
2 + (1 − 𝑟13

2 )𝑟12.3
2       (3.37) 

In concluding this section, consider the following: It was stated previously that 𝑅2 

will not decrease if an additional explanatory variable is introduced into the model, 

which can be seen clearly from second equation of (3.37). This equation states that 

the proportion of the variation in 𝑌 explained by 𝑋2 and 𝑋3 jointly is the sum of 

two parts: the part explained by 𝑋2 alone (= 𝑟12
2 ) and the part not explained by 𝑋2 

(= 1 − 𝑟12
2 ) times the proportion that is explained by 𝑋3 after holding the influence 

of 𝑋2 constant (= 𝑟13.2
2 ). Now 𝑅2 > 𝑟12

2  so long as 𝑟13.2
2 > 0. At worst, 𝑟13.2

2  will be 

zero, in which case 𝑅2 = 𝑟12
2 . 

 

3.4.5. Prediction in the Multiple Regression Model 
 

Similar to estimated two-variable regression model, estimated multiple regression 

model too can be used for (1) mean prediction, that is, predicting the point on the 

population regression function (PRF), as well as for (2) individual prediction, that 

is, predicting an individual value of 𝑌 given the value of the regressors.  

 

3.4.6. The Multiple Coefficient of Determination 
 

The coefficient of determination is: 

 𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ 𝑢𝑖
2

∑ 𝑦𝑖
2      (3.38) 

Now ∑ 𝑦𝑖
2 is independent of the number of 𝑋 variables in the model because it is 

simply (𝑌𝑖 − 𝑌̅)2. The RSS, ∑ 𝑢𝑖
2, however, depends on the number of regressors 

present in the model. Intuitively, it is clear that as the number of 𝑋 variables 

increases, ∑ 𝑢𝑖
2 is likely to decrease (at least it will not increase); hence 𝑅2 as 

defined in Eq. (3.35) will increase. In view of this, in comparing two regression 

models with the same dependent variable but differing number of 𝑋 variables, one 

should be very wary of choosing the model with the highest 𝑅2. Adjusted 𝑅2 

(denoted by 𝑅̅2) is often used to address this issue. 
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𝑅̅2 = 1 − (

∑ 𝑢𝑖
2

𝑛−𝑘

∑ 𝑦𝑖
2

𝑛−1

) = 1 − [(1 − 𝑅2) (
𝑛−1

𝑛−𝑘
)] = 1 −

𝜎̂2

𝑆𝑌
2   (3.39) 

It is immediately apparent from equation (3.36) that: 

• for 𝑘 > 1, 𝑅̅2 < 𝑅2 which implies that as the number of X variables 

increases, the adjusted 𝑅2 increases less than the unadjusted 𝑅2. 

• 𝑅̅2 can be negative, 𝑅2 is necessarily non-negative. That is if 𝑅2 = 1, then 

𝑅̅2 = 𝑅2 = 1. When 𝑅2 = 0, then 𝑅̅2 = (1 − 𝑘)/(𝑛 − 𝑘) can be negative 

if 𝑘 > 1. 0 In case 𝑅̅2 turns out to be negative in an application, its value is 

taken as zero. 

 

According to Theil (1978), 

…it is good practice to use 𝑅̅2 rather than 𝑅2 because 𝑅2 tends to 

give an overly optimistic picture of the fit of the regression, 

particularly when the number of explanatory variables is not very 

small compared with the number of observations. 

 

Further, it is crucial to note that in comparing two models on the basis of the 

coefficient of determination, whether adjusted or not, the sample size n and the 

dependent variable must be the same 

 

In concluding this section, a word of caution is necessary: Some researchers may 

fall into the trap of maximizing 𝑅̅2, meaning they choose the model that yields the 

highest 𝑅̅2 value. However, this approach can be perilous because our primary 

objective in regression analysis is not solely to achieve a high 𝑅̅2, but rather to 

obtain reliable estimates of the true population regression coefficients and draw 

meaningful statistical inferences about them. In empirical analysis, it is not 

uncommon to achieve a very high 𝑅̅2 but discover that some of the regression 

coefficients are either statistically insignificant or have signs that contradict a priori 

expectations. Hence, researchers should prioritize the logical or theoretical 

relevance of the explanatory variables to the dependent variable and their statistical 

significance. If, in this process, a high 𝑅̅2 is obtained, it is certainly beneficial. 

Conversely, if 𝑅̅2 is low, it does not necessarily imply that the model is inadequate 

(Achen, 1982; Granger & Newbold, 1976). According to Goldberger (1991): 

From our perspective, 𝑅2 has a very modest role in regression 

analysis, being a measure of the goodness of fit of a sample LS 

[least-squares] linear regression in a body of data. Nothing in the 

CR [CLRM] model requires that 𝑅2 be high. Hence a high 𝑅2is not 

evidence in favor of the model and a low 𝑅2 is not evidence against 

it. 
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3.5. Self-Assessment Questions 
 

• Can you explain the concept of a multiple regression model and its 

components? Why is it advantageous to use two or more explanatory 

variables? 

• Can you describe the process of testing hypotheses about an individual 

partial regression coefficient in a multiple regression model? How about 

testing the overall significance of the estimated regression model? 

• How do you interpret the regression coefficients in a multiple regression 

model? What does a positive or negative coefficient imply? 

• Can you distinguish between partial and multiple correlation coefficients? 

How are they related, and what does each represent in a multiple regression 

model? 

• How do you use a multiple regression model to predict the value of a 

dependent variable? What steps would you follow to perform this 

prediction? 

• Can you define the multiple coefficients of determination and explain its 

significance? How can it be used to assess the quality of a multiple 

regression model? 

• Can you provide an example from a real-world scenario where you could 

apply a multiple regression model to solve a problem or answer a question? 

How would you interpret the results? 

• How would you test that two or more coefficients are equal in a multiple 

regression model? 

• Using two subsets of data from different time periods or cross-sectional 

units, can you test the stability of the regression model over time or across 

units? 
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4.1. INTRODUCTION 
 

Welcome to Unit 4, where we delve into the intricacies of the 𝑘-Variable Linear 

Regression Model. Throughout this Unit, we will explore various fundamental 

aspects of linear regression using matrix notations. Starting with an understanding 

of the assumptions that underpin this model, we will then proceed to grasp the core 

concepts of OLS Estimation and the properties of OLS estimators. Hypothesis 

testing and the analysis of variance will also be presented in the context of matrix 

notation. Additionally, we will explore the significance and applications of the 

correlation matrix. So, let's embark on this journey to enhance our comprehension 

of the 𝑘-Variable Linear Regression Model and its key components. 

 

4.2. Objectives 
 

After going through the unit, you will be able to: 
 

• understand the k-Variable Linear Regression Model: Gain a 

comprehensive understanding of the k-variable linear regression model, its 

components, and how it is represented using matrix notations. 
 

• grasp Assumptions in Matrix Notations: Familiarize yourself with the 

assumptions underlying the linear regression model when expressed in 

matrix form, which form the basis for reliable estimation. 
 

• master OLS Estimation and Properties: Learn the Ordinary Least 

Squares (OLS) estimation technique, and explore the essential properties of 

OLS estimators, enabling accurate parameter estimation in regression 

models. 
 

• perform Hypothesis Testing in Matrix Notations: Develop the skills to 

conduct hypothesis testing in the context of matrix notations, providing 

insights into the significance of various model parameters. 
 

• Analyze Variance using Matrix Notation: Discover how to analyze 

variance in the linear regression model when represented in matrix notation, 

gaining insights into the distribution of the error terms. 
 

• explore the Correlation Matrix: Explore the significance and applications 

of the correlation matrix, understanding its role in measuring the 

relationships between variables. 
 

• apply Matrix Notations in Linear Regression: Learn to apply matrix 

notations effectively in various scenarios, enhancing your ability to work 

with complex regression models and large datasets. 
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• enhance Analytical and Interpretive Skills: Develop strong analytical 

skills to interpret regression results accurately, enabling you to draw 

meaningful insights from empirical data. 
 

• build a Solid Foundation in Regression Analysis: Acquire a solid 

foundation in regression analysis, providing a valuable skillset for 

conducting empirical research and data-driven decision-making in various 

fields. 
 

• prepare for Advanced Topics: Lay the groundwork for advanced topics 

in econometrics, statistics, and data science, setting the stage for further 

academic and professional growth. 

 

By mastering these objectives, you will be well-equipped to navigate the intricacies 

of the k-Variable Linear Regression Model and apply matrix notations effectively 

in practical data analysis and research endeavors. 
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4.3. Major Topics 
 

• The k-Variable Linear Regression Model 

• Assumptions of Linear Regression model in Matrix Notations 

• OLS Estimation and Properties of OLS Estimators   

• Hypothesis Testing in Matrix Notations 

• Analysis of Variance in Matrix Notation 

• The Correlation Matrix 

 

4.4. Summary of the Units 
 

4.4.1. The k-Variable Linear Regression Model  
 

Now we generalize the two- and three-variable linear regression model, with k-

variable Population Regression Function (PRF) involving the dependent variable 𝑌 

and 𝑘 − 1 explanatory variables 𝑋2, 𝑋3, … , 𝑋𝑘. The model can be written as: 

 𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖 + 𝑢𝑖    (4.1) 

Where, 𝛽1 is intercept, 𝛽2 to 𝛽𝑘 are partial slope coefficients, 𝑢 is the stochastic 

disturbance term and 𝑖 represents 𝑖th observation, 𝑛 being size of the population. 

The model presented in (4.1) give us mean value of 𝑌 conditional upon the fixed 

values of explanatory variables [𝐸(𝑌𝑖 | 𝑋2𝑖, 𝑋3𝑖 , … , 𝑋𝑘𝑖)].  
 

Expressed as Equation (4.1), we compactly represent the following set of n 

simultaneous equations: 

 𝑌1 = 𝛽1 + 𝛽2𝑋21 + 𝛽3𝑋31 + ⋯+ 𝛽𝑘𝑋𝑘1 + 𝑢1 

 𝑌2 = 𝛽1 + 𝛽2𝑋22 + 𝛽3𝑋32 + ⋯+ 𝛽𝑘𝑋𝑘2 + 𝑢2 

 ⋮ 
 𝑌𝑛 = 𝛽1 + 𝛽2𝑋2𝑛 + 𝛽3𝑋3𝑛 + ⋯+ 𝛽𝑘𝑋𝑘𝑛 + 𝑢𝑛   (4.2) 

Now, we shall present an alternative, yet more enlightening form of the system of 

equations (4.2) as follows: 

[

𝑌1

𝑌2

⋮
𝑌𝑛

] = [

1 𝑋21 𝑋31 ⋯ 𝑋𝑘1

1 𝑋22 𝑋32 ⋯ 𝑋𝑘2

⋮
1

⋮
𝑋2𝑛

⋮ ⋱ ⋮
𝑋3𝑛 ⋯ 𝑋𝑘𝑛

] [

𝛽1

𝛽2

⋮
𝛽𝑛

] + [

𝑢1

𝑢2

⋮
𝑢𝑛

] 

𝒀     =                      𝑿                             𝜷   +    𝑼   (4.3) 

Where 𝒀 is 𝑛 × 1 column vector of observations on the dependent variable 𝑌, 𝑿 is 

𝑛 × 𝑘 matrix giving 𝑛 observations on 𝑘 − 1 variables 𝑋2 to 𝑋𝑘 (this is also known 

as data matrix), 𝜷 is 𝑘 × 1 column vector of unknown parameters 𝛽2, 𝛽3, … , 𝛽𝑘, and 

𝑼 is 𝑛 × 1 column vector of 𝑛 disturbances 𝑢𝑖. The matrix representation of the 

general (k-variable) linear regression model is denoted as System (4.3). In simple 

form it can be written as: 
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𝒀 = 𝑿𝜷 + 𝑼        (4.4) 

For the purpose of estimation, we may use the method of least squares (OLS) of the 

method of maximum likelihood (ML). But as noted in unit 3, these two methods 

yield identical estimates of the regression coefficients. 

 

4.4.2. Assumptions of Linear Regression Model in Matrix Notations  
 

The assumptions underlying the classical linear regression model (CLRM) are as 

follow: 

• Assumption 1: The expected value of disturbance vector 𝑼, that is, of each 

of its element, is zero 𝐸(𝑼) = 0 or 𝐸(𝑢𝑖) = 0 for each 𝑖 = 1,2,3, … , 𝑛. 

𝐸 [

𝑢1

𝑢2

⋮
𝑢𝑛

] = [

𝐸(𝑢1)
𝐸(𝑢2)

⋮
𝐸(𝑢𝑛)

] = [

0
0
⋮
0

]     (4.5) 

• Assumption 2: 𝐸(𝑼𝑼′) = 𝜎2𝑰 represent two assumptions, 𝐸(𝑢𝑖𝑢𝑗) = 0 

for 𝑖 ≠ 𝑗 indicating no serial correlation and 𝐸(𝑢𝑖𝑢𝑗) = 𝜎2 for 𝑖 = 𝑗 

indicating no heteroscedasticity (having homoscedasticity).  

𝐸(𝑼𝑼′) = 𝐸 [

𝑢1

𝑢2

⋮
𝑢𝑛

] [𝑢1 𝑢2
𝑢3 𝑢4] = 𝐸

[
 
 
 

𝑢1
2 𝑢1𝑢2 ⋯ 𝑢1𝑢𝑛

𝑢2𝑢1 𝑢2
2 ⋯ 𝑢2𝑢𝑛

⋮
𝑢𝑛𝑢1

⋮
𝑢𝑛𝑢2

⋱       ⋮
⋯ 𝑢𝑘

2 ]
 
 
 
 

=

[
 
 
 

𝐸(𝑢1
2) 𝐸(𝑢1𝑢2) ⋯ 𝐸(𝑢1𝑢𝑛)

𝐸(𝑢2𝑢1) 𝐸(𝑢2
2) ⋯ 𝐸(𝑢2𝑢𝑛)

⋮
𝐸(𝑢𝑛𝑢1)

⋮
𝐸(𝑢𝑛𝑢2)

⋱       ⋮
⋯ 𝐸(𝑢𝑘

2) ]
 
 
 
   (4.6) 

According to the assumption of homoscedasticity 𝐸(𝑢𝑖𝑢𝑗) = 𝜎2 for 𝑖 = 𝑗 and the 

assumption of no autocorrelation 𝐸(𝑢𝑖𝑢𝑗) = 0 for 𝑖 ≠ 𝑗. We can write the above 

matrix as follow: 

𝐸(𝑼𝑼′) = [

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮
0

⋮
0

⋱ ⋮

⋯ 𝜎2

] = 𝜎2 [

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0

⋮
0

⋱ ⋮
⋯ 1

]=𝜎2𝑰  (4.7) 

Where 𝑰 is an 𝑛 × 𝑛 identity matrix. Matrix presented in (4.6) is called the variance-

covariance of the disturbances 𝑢𝑖. Elements along  the diagonal present 

variances, whereas elements off the diagonal present covariances. Further, it should 

be noted that variance-covariance matrix is symmetric. 

• Assumption 3: The matrix 𝑿 is non-stochastic, that is, it consists of fixed 

numbers. 
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• Assumption 4: The matrix 𝑿 has full column rank equal to 𝜌(𝑿) = 𝑘. This 

means that the columns of the 𝑿 matrix are linearly independent; that is, 

there is no exact linear relationship among the 𝑿 variables. In other words 

there is no multicollinearity. 

• Assumption 5: The vector 𝑼 has multivariate normal distribution i.e., 

𝑼~𝑁(𝟎, 𝜎2𝑰) or 𝑢𝑖~𝑁(0, 𝜎2). The assumption is very important for 

hypothesis testing. 

 

4.4.3. OLS Estimation and Properties of OLS Estimators  
 

Before deriving the Ordinary Least Squares (OLS) estimate of 𝜷, let's begin by 

expressing the 𝑘-variable sample regression function (SRF): 

 𝑌𝑖 = 𝛽̂1 + 𝛽̂2𝑋2𝑖 + 𝛽̂3𝑋3𝑖 + ⋯+ 𝛽̂𝑘𝑋𝑘𝑖 + 𝑢̂𝑖    (4.8) 

The above equation can be written in the matrix form as follow:  

[

𝑌1

𝑌2

⋮
𝑌𝑛

] = [

1 𝑋21 𝑋31 ⋯ 𝑋𝑘1

1 𝑋22 𝑋32 ⋯ 𝑋𝑘2

⋮
1

⋮
𝑋2𝑛

⋮ ⋱ ⋮
𝑋3𝑛 ⋯ 𝑋𝑘𝑛

]

[
 
 
 
𝛽̂1

𝛽̂2

⋮
𝛽̂𝑛]

 
 
 

+ [

𝑢̂1

𝑢̂2

⋮
𝑢̂𝑛

] 

 𝒀     =                      𝑿                             𝜷̂    +   𝑼̂   

 𝒀     = 𝑿 𝜷̂ + 𝑼̂       (4.9) 

Where 𝜷̂ is a 𝑘-element column vector of OLS estimators of the regression 

coefficients. Similar to two- and three-variable models, OLS estimators can be 

obtained my minimizing:  

 ∑𝑢𝑖
2 = ∑(𝑌𝑖 − 𝛽̂1 − 𝛽̂2𝑋2 − ⋯− 𝛽̂𝑘𝑋𝑘)

2
    (4.10) 

Where, ∑𝑢𝑖
2 represents the residual sum of square (RSS). In matrix notation ∑𝑢𝑖

2 

can be obtained by 𝑼̂′𝑼̂. 

 𝑼̂′𝑼̂ = [𝑢̂1 𝑢̂2 … 𝑢̂𝑛] [

𝑢̂1

𝑢̂2

⋮
𝑢̂𝑛

] = 𝑢1
2 + 𝑢2

2 + ⋯+ 𝑢𝑛
2 = ∑𝑢𝑖

2 (4.11) 

Now from equation (4.9) 

𝑼̂ = 𝒀 − 𝑿 𝜷̂        (4.12) 

Therefore, equation (4.11) can be written as: 

𝑼̂′𝑼̂ = (𝒀 − 𝑿 𝜷̂)′(𝒀 − 𝑿 𝜷̂) 

= (𝒀′ − 𝜷̂′𝑿′)(𝒀 − 𝑿 𝜷̂)       ∴ (𝑿 𝜷̂)
′
= 𝜷̂′𝑿′ 

= (𝒀′𝒀 − 𝒀′𝑿 𝜷̂ − 𝜷̂′𝑿′𝒀 + 𝜷̂′𝑿′𝑿 𝜷̂ 

= 𝒀′𝒀 − 𝒀′𝑿 𝜷̂ − 𝜷̂′𝑿′𝒀 + 𝜷̂′𝑿′𝑿 𝜷̂      ∴  𝒀′𝑿 𝜷̂ = 𝜷̂′𝑿′𝒀 

= 𝒀′𝒀 − 𝟐 𝜷̂′𝑿′𝒀 + 𝜷̂′𝑿′𝑿 𝜷̂     (4.13) 
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Equation (4.13) is the matrix representation of equation (4.10). The OLS estimators 

can be obtained by differentiating equation (4.13) with respect to 𝜷̂ .  

 
𝜕(𝑼̂′𝑼̂)

𝜕𝜷̂
=

𝜕(𝒀′𝒀−𝟐 𝜷̂′𝑿′𝒀+𝜷̂′𝑿′𝑿 𝜷̂)

𝜕𝜷̂
 

=
𝜕(𝒀′𝒀)

𝜕𝜷̂
−

𝜕(−𝟐 𝜷̂′𝑿′𝒀)

𝜕𝜷̂
+

𝜕(𝜷̂′𝑿′𝑿 𝜷̂)

𝜕𝜷̂
 

= 𝟎 − 2 (𝑿′𝒀) + 2(𝑿′𝑿)𝜷̂ 

Therefore, we can write: 

2(𝑿′𝑿)𝜷̂ = 2(𝑿′𝒀) 

(𝑿′𝑿)𝜷̂ = (𝑿′𝒀) 

Pre-multiplying both sides by (𝑿′𝑿)−1 

(𝑿′𝑿)−1(𝑿′𝑿)𝜷̂ = (𝑿′𝑿)−1(𝑿′𝒀) 

𝜷̂ = (𝑿′𝑿)−1(𝑿′𝒀)     (4.14) 

Equation (4.14) is a fundamental result of the OLS theory in matrix notation. 

Further, using the matrix approach it is easy to write the variance-covariance matrix 

of 𝜷̂.  

var-cov (𝜷̂) = 𝐸[𝜷̂ − 𝐸(𝜷̂)][𝜷̂ − 𝐸(𝜷̂)]
′
    (4.15) 

The variance-covariance matrix can be written as: 

var-cov (𝜷̂) =

[
 
 
 
 

𝑣𝑎𝑟(𝛽̂1) 𝑐𝑜𝑣(𝛽̂1, 𝛽̂2) ⋯ 𝑐𝑜𝑣(𝛽̂1, 𝛽̂𝑘)

𝑐𝑜𝑣(𝛽̂2, 𝛽̂1) 𝑣𝑎𝑟(𝛽̂2) ⋯ 𝑐𝑜𝑣(𝛽̂2, 𝛽̂𝑘)

⋮
𝑐𝑜𝑣(𝛽̂𝑘, 𝛽̂1)

⋮
𝑐𝑜𝑣(𝛽̂𝑘, 𝛽̂2)

⋱       ⋮
⋯ 𝑣𝑎𝑟(𝛽̂𝑘) ]

 
 
 
 

 

var-cov (𝜷̂) = 𝜎2(𝑿′𝑿)−1      (4.16) 

Similarly, for 𝑘-variable regression model, the unbiased estimator of 𝜎2 can be 

written as: 

𝜎̂2 =
∑𝑢2

𝑛−𝑘
=

𝑼̂′𝑼̂

𝑛−𝑘
       (4.17) 

The BLUE property of OLS estimators can be generalized for the vector of 

estimators obtain through the equation (4.14). 𝜷̂ is linear (each of its elements is a 

linear function of Y, the dependent variable). 𝐸(𝜷̂) = 𝜷, that is, the expected value 

of each element of 𝜷̂ is equal to the corresponding element of the true 𝜷, and in the 

class of all linear unbiased estimators of 𝜷, the OLS estimator 𝜷̂ has minimum 

variance. 

 

4.4.4. Hypothesis Testing in Matrix Notations  
 

For hypothesis testing we assume that each 𝑢𝑖 follows the normal distribution with 

zero mean and constant variance 𝜎2. In matrix notation, we can write: 

 𝑼~𝑁(𝟎, 𝜎2𝑰)        (4.18) 
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Where, 𝟎 is the null vector of dimension 𝑛 × 1. Likewise, each element of 𝜷̂ is 

normally distributed with mean equal to the corresponding element of true 𝜷 and 

variance given by 𝜎2 times the appropriate diagonal element of the inverse matrix 

(𝑿′𝑿)−1. 

  𝜷̂~𝑁[𝜷, 𝜎2(𝑿′𝑿)−1]        (4.19) 

Since in practice 𝜎2 is unknown, it is estimated by 𝜎̂2 by using equation (4.17). 

Each element of 𝜷̂ follows the t-distribution with 𝑛 − 𝑘 df. Thus t-distribution 

therefore be used to test hypotheses about the true 𝜷. The test statistic is as follow: 

 𝑡 =
𝛽̂𝑖−𝛽𝑖

𝑠𝑒(𝛽̂𝑖)
        (4.20) 

4.4.5. Analysis of Variance in Matrix Notation  
 

The ANOVA technique can be easily extended to the 𝑘-variable case. TSS, RSS 

and ESS in the matrix form can be obtained by using the following formulas: 

 𝑇𝑆𝑆:  ∑ 𝑦𝑖
2 = 𝒀′𝒀 − 𝑛𝑌̅2 

 𝐸𝑆𝑆: 𝛽̂2 ∑𝑦𝑖𝑥2𝑖 + ⋯+ 𝛽̂𝑘 ∑𝑦𝑖𝑥𝑘𝑖 = 𝜷̂′𝑿′𝒀 − 𝑛𝑌̅2 

𝑅𝑆𝑆: 𝑼̂′𝑼̂ = 𝒀′𝒀 − 𝜷̂′𝑿′𝒀      (4.21) 

The degree of freedoms with these sums are 𝑛 − 1, 𝑘 − 1, and 𝑛 − 𝑘, respectively. 

Given the values of 𝑇𝑆𝑆, 𝐸𝑆𝑆, and 𝑅𝑆𝑆 one can calculate the value of 𝑅2 using the 

following formula: 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=

𝜷̂′𝑿′𝒀−𝑛𝑌̅2

𝒀′𝒀−𝜷̂′𝑿′𝒀
       (4.22) 

Assuming that the disturbances 𝑢𝑖 are normally distributed and the null hypothesis 

is 𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0. The test statistics for the hypothesis is: 

𝐹 =
(𝜷̂′𝑿′𝒀−𝑛𝑌̅2)/(𝒌−𝟏)

(𝒀′𝒀−𝜷̂′𝑿′𝒀)/(𝑛−𝑘)
=

𝑅2/(𝑘−1)

(1−𝑅2)/(𝑛−𝑘)
     (4.23) 

The ANOVA tables for the above test statistics can be written as: 

 

Table 4.1: Matrix formulation of the ANOVA Table for 𝑘-variable linear regression 

model 

Source of Variation Sum of Squares d.f. Mean sum of Squares 

Due to regression 

(ESS) 

[Due to 𝑋1, 𝑋2, … , 𝑋𝑘] 

𝜷̂′𝑿′𝒀 − 𝑛𝑌̅2 𝑘
− 1 

𝜷̂𝑿′𝒀−𝑛𝑌̅2

𝑘−1
  

Due to residuals (RSS) 𝒀′𝒀 − 𝜷̂′𝑿′𝒀 𝑛
− 𝑘 

𝒀′𝒀−𝜷̂′𝑿′𝒀

𝑛−𝑘
  

Total (TSS) 𝒀′𝒀 − 𝑛𝑌̅2 𝑛
− 1 

 

 

In terms of 𝑅2, the ANOVA table can be presented as: 
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Table 4.2: Matrix formulation of the ANOVA Table in matrix form in terms of  𝑅2 

 

Source of Variation Sum of Squares d.f. Mean sum of Squares 

Due to regression 

(ESS) 

[Due to 𝑋1, 𝑋2, … , 𝑋𝑘] 

𝑅2(𝒀′𝒀 − 𝑛𝑌̅2) 𝑘
− 1 

𝑅2(𝒀′𝒀−𝑛𝑌̅2)

𝑘−1
    

Due to residuals (RSS) (1 − 𝑅2)(𝒀′𝒀 − 𝑛𝑌̅2) 𝑛
− 𝑘 

(1−𝑅2)(𝒀′𝒀−𝑛𝑌̅2)

𝑛−𝑘
   

Total (TSS) 𝒀′𝒀 − 𝑛𝑌̅2 𝑛
− 1 

 

 

4.4.6. The Correlation Matrix  
 

In the preceding unit, we encountered the zero-order, or simple, correlation 

coefficients 𝑟12, 𝑟13, 𝑟23 along with the partial, or first-order, correlations 𝑟12.3, 𝑟13.2, 

𝑟23.1, and their interrelationships. For the k-variable scenario, there will be a total 

of 𝑘(𝑘 −  1)/2 zero-order correlation coefficients. These 𝑘(𝑘 −  1)/2 

correlations can be presented in the correlation matrix 𝑹 as follows: 

 𝑹 = [

𝑟11 𝑟12 𝑟13 ⋯ 𝑟1𝑘

𝑟21 𝑟22 𝑟23 ⋯ 𝑟2𝑘

⋮
𝑟𝑘1

⋮
𝑟𝑘2

⋮ ⋱ ⋮
𝑟𝑘3

⋯ 𝑟𝑘𝑘

] = [

1 𝑟12 𝑟13 ⋯ 𝑟1𝑘

𝑟21 1 𝑟23 ⋯ 𝑟2𝑘

⋮
𝑟𝑘1

⋮
𝑟𝑘2

⋮ ⋱ ⋮
𝑟𝑘3 ⋯ 1

] (4.24) 

Where the subscript 1, as before, denotes the dependent variable 𝑌. Further, by 

using the formulas presented in previous unit, one can obtain the correlation 

coefficients of first order or higher order. 
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4.5. Self-Assessment Questions 
 

• Define the k-Variable Linear Regression Model and explain its significance 

in statistical analysis. 

• What are the key assumptions of the linear regression model when 

represented in matrix notations? How do these assumptions affect the 

reliability of the regression results? 

• Describe the Ordinary Least Squares (OLS) estimation method and its 

primary purpose in regression analysis. 

• What are the essential properties of OLS estimators, and how do they 

contribute to the accuracy of parameter estimation? 

• How can hypothesis testing be conducted in the context of matrix notations, 

and what insights can be gained from such tests in linear regression? 

• Explain the concept of analysis of variance in matrix notation and discuss 

its role in understanding the distribution of error terms in regression. 

• What is the correlation matrix, and how is it calculated in the context of 

linear regression? Describe its applications and importance in interpreting 

relationships between variables. 

• Demonstrate how matrix notations can be effectively applied in linear 

regression scenarios, using specific examples. 

• Analyze a given dataset with multiple variables and perform k-Variable 

Linear Regression using matrix notations to estimate model parameters. 

• Discuss the practical implications and limitations of the k-Variable Linear 

Regression Model in real-world data analysis. 

• How can you leverage the knowledge gained from this unit to conduct 

empirical research or make data-driven decisions in your chosen field? 

• Compare and contrast the k-Variable Linear Regression Model with other 

regression techniques, highlighting their strengths and weaknesses. 

• Propose a research question in your area of interest where the k-Variable 

Linear Regression Model could be applied and outline the steps you would 

take to analyze the data using matrix notations. 

• Reflect on the key concepts and skills you have learned in this chapter and 

identify areas where you may need further practice or study. 

• Consider the broader implications of understanding regression analysis in 

matrix notations and how it can contribute to your academic and 

professional development. 
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5.1. INTRODUCTION 
 

This unit explores the intricate topic of multicollinearity, a common issue in 

multiple regression analysis where predictor variables are closely correlated with 

one another. We'll begin with an exploration of the nature of multicollinearity, 

delving into its origins and significance in statistical analysis. Moving forward, 

we'll discuss how to estimate variables in scenarios where multicollinearity is 

present and examine the implications of such correlation on the precision of 

estimates and the reliability of statistical inference. This is essential to understand 

as multicollinearity can often distort the individual effect of predictor variables and 

lead to wider confidence intervals. 

 

We'll then dive into the methods for detecting multicollinearity, focusing on key 

identifiers and statistical measures such as variance inflation factors (VIF) and 

correlation matrices. Finally, the chapter concludes with a review of various 

remedial measures available to tackle multicollinearity. From data transformations 

to variable selection, we'll discuss the pros and cons of these techniques and provide 

insights on how best to manage and mitigate the effects of multicollinearity in your 

regression models. 
 

5.2. OBJECTIVES 
 

By the end of this Unit, students should be able to: 
 

• understanding Multicollinearity: Comprehend the concept, its causes, 

and its relevance in multiple regression analysis. 
 

• estimation amid Multicollinearity: Understand the process and 

consequences of estimation in the presence of multicollinearity. 
 

• detection Techniques for Multicollinearity: Learn how to identify 

multicollinearity using various methods like correlation matrices and 

variance inflation factors (VIF). 
 

• implications of Multicollinearity: Analyze the potential effects and 

distortions that multicollinearity can introduce to statistical models and 

individual predictor variables. 
 

• applying Remedial Measures: Learn to apply different strategies to 

mitigate multicollinearity, understanding the advantages and limitations of 

each approach. 
 

• critical Thinking and Problem-solving: Develop skills to navigate 

challenges posed by multicollinearity in practical scenarios and to adapt 

strategies for effective management in personal statistical analyses. 
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5.3. Major Topics 
 

• Nature of the Multicollinearity 

• Estimation in the Presence of Multicollinearity 

• Consequences of Multicollinearity 

• Detection of Multicollinearity 

• Remedial Measures 

 

5.4. Summary of the Units 
 

5.4.1. Nature of the Multicollinearity  

 

The credit for the term "multicollinearity" goes to Ragnar Frisch. Originally, it 

referred to the presence of a "perfect" or exact linear relationship among one or 

more explanatory variables within a regression model. In the context of a 𝑘-variable 

regression involving explanatory variables 𝑋1, 𝑋2, … , 𝑋𝑘 (where 𝑋1 = 1 for all 

observations to account for the intercept term), an exact linear relationship is 

considered to exist if the following condition is met: 

 𝜆1𝑋1 + 𝜆2𝑋2 + ⋯ + 𝜆𝑘𝑋𝑘 = 0     (5.1) 

Where 𝜆1, 𝜆2, … , 𝜆𝑘 are constants such that not all of them are zero simultaneously. 

This type of multicollinearity is called as perfect multicollinearity. There is a case 

where 𝑋 variables are inter-correlated but not perfectly so, 

𝜆1𝑋1 + 𝜆2𝑋2 + ⋯ + 𝜆𝑘𝑋𝑘 + 𝑣𝑖 = 0     (5.2) 

Where 𝑣𝑖 is a stochastic error term. Multicollinearity refers only to linear 

relationships among the 𝑋 variable. Various factors can contribute to 

multicollinearity, as pointed out by Montgomery and Peck. These sources include: 
 

• Data collection method: Multicollinearity may arise when data is collected 

over a limited range of values for the regressors in the population. For 

instance, if the sampling process is restricted to a specific segment of the 

variable's distribution. 
 

• Constraints in the model or population: Physical constraints within the 

population being sampled can lead to multicollinearity. For example, in a 

regression of electricity consumption on income (𝑋2) and house size (𝑋3), 

families with higher incomes generally tend to have larger homes, 

introducing a correlation between these variables. 
 

• Model specification: Multicollinearity can emerge due to the inclusion of 

polynomial terms in a regression model, particularly when the range of the 

𝑋 variable is narrow. This can lead to high correlations among the 

predictors. 
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• Overdetermined model: When a regression model has more explanatory 

variables than the number of observations available, it becomes 

overdetermined. In medical research, for instance, where data on many 

variables is collected from a small number of patients, multicollinearity can 

occur due to the scarcity of data points relative to the number of predictors. 
 

By being aware of these potential sources of multicollinearity, researchers can 

better identify, and address issues related to collinearity in regression analysis. 

 

5.4.2. Estimation in the Presence of Multicollinearity  
 

In the case of perfect multicollinearity, the regression coefficients remain 

indeterminate, and their standard errors are infinite. In terms of the three-variable 

regression model, using the deviation form, where all the variables are expressed 

as deviations from their sample means, we can write the three-variable regression 

model as: 

 𝑦𝑖 = 𝛽̂2𝑥2𝑖 + 𝛽̂3𝑥3𝑖 + 𝑢̂𝑖      (5.3) 

Now from unit 3, we can write: 

 𝛽̂2 =
(∑ 𝑦𝑖𝑥2𝑖)(∑ 𝑥3𝑖

2 )−(∑ 𝑦𝑖𝑥3𝑖)(∑ 𝑥2𝑖𝑥3𝑖)

(∑ 𝑥2𝑖
2 )(∑ 𝑥3𝑖

2 )−(∑ 𝑥2𝑖𝑥3𝑖)2  

 𝛽̂3 =
(∑ 𝑦𝑖𝑥3𝑖)(∑ 𝑥2𝑖

2 )−(∑ 𝑦𝑖𝑥2𝑖)(∑ 𝑥2𝑖𝑥3𝑖)

(∑ 𝑥2𝑖
2 )(∑ 𝑥3𝑖

2 )−(∑ 𝑥2𝑖𝑥3𝑖)2      (5.4) 

Assume that 𝑋3𝑖 = 𝜆𝑋2𝑖, where 𝜆 is a nonzero constant. This implies that  

 𝑥3𝑖 = 𝑋3𝑖 − 𝑋̅3𝑖 = 𝜆𝑋2𝑖 − 𝜆𝑋̅2𝑖 = 𝜆(𝑋2𝑖 − 𝑋̅2𝑖) = 𝜆𝑥2𝑖  (5.5) 

Substituting in the equation of 𝛽̂2, we will get: 

 𝛽̂2 =
(∑ 𝑦𝑖𝑥2𝑖)(𝜆2 ∑ 𝑥2𝑖

2 )−(𝜆 ∑ 𝑦𝑖𝑥2𝑖)(𝜆 ∑ 𝑥2𝑖𝑥2𝑖)

(∑ 𝑥2𝑖
2 )(𝜆2 ∑ 𝑥2𝑖

2 )−(𝜆 ∑ 𝑥2𝑖𝑥2𝑖)2 =
0

0
    (5.6) 

Which is indeterminate expression. Similarly, it can be shown that 𝛽̂3 is also 

indeterminate. In essence, the situation implies that we cannot untangle the distinct 

impacts of 𝑋2 and 𝑋3 in the given sample. For all practical purposes, 𝑋2 and 𝑋3 

become indistinguishable. This issue is particularly troublesome in applied 

econometrics, as the primary objective is precisely to isolate and assess the 

individual partial effects of each 𝑋 on the dependent variable. 

 

5.4.2.2 Estimation in the Presence of Imperfect Multicollinearity 
 

Typically, there is no precise linear relationship among the 𝑋 variables, particularly 

when dealing with economic time series data. Consequently, when examining the 

three-variable model in the deviation form presented in Eq. (5.3), instead of 

encountering exact multicollinearity, we may encounter another situation. 

 𝑋3𝑖 = 𝜆𝑋2𝑖 + 𝑣𝑖       (5.7) 

Here 𝑣𝑖 is a stochastic variable with mean zero (𝑣̅𝑖 = 0). This implies that: 
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 𝑥3𝑖 = 𝑋3𝑖 − 𝑋̅3𝑖 = (𝜆𝑋2𝑖 + 𝑣𝑖) − (𝜆𝑋̅2𝑖) 

= 𝜆(𝑋2𝑖 − 𝑋̅2𝑖) + 𝑣𝑖 = 𝜆𝑥2𝑖 + 𝑣𝑖     (5.8) 

So the estimation of 𝛽2 and 𝛽3 is possible, with ∑ 𝑥2𝑖𝑣𝑖 = 0, the expression for 𝛽̂2 

can be written as: 

𝛽̂2 =
(∑ 𝑦𝑖𝑥2𝑖)(𝜆2 ∑ 𝑥2𝑖

2 +∑ 𝑣𝑖
2)−(𝜆 ∑ 𝑦𝑖𝑥2𝑖+∑ 𝑦𝑖𝑣𝑖)(𝜆 ∑ 𝑥2𝑖𝑥2𝑖)

(∑ 𝑥2𝑖
2 )(𝜆2 ∑ 𝑥2𝑖

2 +∑ 𝑣𝑖
2)−(𝜆 ∑ 𝑥2𝑖𝑥2𝑖)2

  

𝛽̂2 =
(∑ 𝑦𝑖𝑥2𝑖)(𝜆2 ∑ 𝑥2𝑖

2 +∑ 𝑣𝑖
2)−(𝜆 ∑ 𝑦𝑖𝑥2𝑖+∑ 𝑦𝑖𝑣𝑖)(𝜆 ∑ 𝑥2𝑖

2 )

(∑ 𝑥2𝑖
2 )(𝜆2 ∑ 𝑥2𝑖

2 +∑ 𝑣𝑖
2)−(𝜆 ∑ 𝑥2𝑖

2 )
2     (5.9) 

Similarly, we can obtain the estimated value of 𝛽3. 

 

5.4.3. Consequences of Multicollinearity 

 

When near or high multicollinearity is present, several consequences are likely to 

arise: 

 

5.4.3.1. Large Variances and Covariances of OLS Estimators  
 

The Ordinary Least Squares (OLS) estimators, while Best Linear Unbiased 

Estimators (BLUE), exhibit large variances and covariances, making precise 

estimation challenging. Values of variances and covariances are given by: 

𝑣𝑎𝑟(𝛽̂2) =
𝜎2

∑ 𝑥2𝑖
2 (1 − 𝑟23

2 )
 

𝑣𝑎𝑟(𝛽̂3) =
𝜎2

∑ 𝑥3𝑖
2 (1 − 𝑟23

2 )
 

𝑐𝑜𝑣(𝛽̂3, 𝛽̂3) =
−𝑟23𝜎2

(1−𝑟23
2 )√∑ 𝑥2𝑖

2 ∑ 𝑥3𝑖
2

     (5.10) 

Where 𝑟23 is the coefficient of correlation between 𝑋2 and 𝑋3. From Eq. (5.10), it 

is evident that as 𝑟23 approaches 1, the value of variances as well as the absolute 

value of the covariance between the two estimators also increases. The speed with 

which variances and covariances increase can be seen with the variance-inflating 

factor (𝑉𝐼𝐹), which is defined as: 

𝑉𝐼𝐹 =
1

(1−𝑟23
2 )

        (5.11) 

𝑉𝐼𝐹 shows that how the variance of an estimator is inflated by the presence of 

multicollinearity. As 𝑟23
2  approaches 1, the 𝑉𝐼𝐹 approaches infinity. Using these 

equations for variances can be written as: 

𝑣𝑎𝑟(𝛽̂2) =
𝜎2

∑ 𝑥2𝑖
2 𝑉𝐼𝐹 

𝑣𝑎𝑟(𝛽̂3) =
𝜎2

∑ 𝑥3𝑖
2 𝑉𝐼𝐹       (5.12) 

In case of k-variable model, variance of the kth coefficient can be expressed as: 
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𝑣𝑎𝑟(𝛽̂𝑗) =
𝜎2

∑ 𝑥𝑗
2(1−𝑅𝑗

2)
=

𝜎2

∑ 𝑥𝑗
2 (

1

1−𝑅𝑗
2) =

𝜎2

∑ 𝑥𝑗
2 𝑉𝐼𝐹𝑗   (5.13) 

Where 𝑅𝑗
2 represents the 𝑅2 in the regression of 𝑋𝑗 on the remaining (𝑘 − 2) 

regressors and ∑ 𝑥𝑗
2 = ∑(𝑋𝑗 − 𝑋̅𝑗)

2
. It should be noted that the inverse of the VIF 

is called tolerance (TOL). That is: 

𝑇𝑂𝐿𝑗 =
1

𝑉𝐼𝐹𝑗
= (1 − 𝑅𝑗

2)       (5.14) 

When 𝑅𝑗
2 equals 1, indicating perfect collinearity, the tolerance factor (𝑇𝑂𝐿𝑗) 

becomes 0. Conversely, when 𝑅𝑗
2 is 0, indicating no collinearity at all, 𝑇𝑂𝐿𝑗 equals 

1. Due to the close relationship between the 𝑉𝐼𝐹 and the 𝑇𝑂𝐿, they can be used 

interchangeably in analyses. 
 

5.4.3.2. Wider Confidence Interval  
 

Due to the significant variance in the above consequence, the confidence intervals 

tend to be much wider, leading to a higher likelihood of accepting the "null 

hypothesis," where the true population coefficient is considered to be zero. 
 

5.4.3.3. Insignificant “𝒕” Ratios  
 

The presence of significant variance can also result in the 𝑡 ratio of one or more 

coefficients being statistically insignificant. This can be seen through the t-ratio 

[𝑡 = 𝛽̂/𝑠𝑒(𝛽̂)]. Therefore, in such cases, one will increasingly accept the null 

hypothesis that the relevant true population value is zero. 
 

5.4.3.4. A High 𝑹𝟐 but Few Significant 𝒕-Ratios  
 

Despite the insignificance of the 𝑡 ratio for one or more coefficients, the overall 

measure of goodness of fit, 𝑅2, can be very high. Indeed, this is one of the signals 

of multicollinearity—insignificant t values but a high overall 𝑅2 (and a significant 

F value) 
 

5.4.3.5. Sensitivity of OLS Estimators and their Standard Errors to Small 

Change in Data  
 

In case of imperfect multicollinearity, the OLS estimators and their standard errors 

become sensitive to small changes in the data, causing potential instability in the 

results. 
 

5.4.4. Detection of Multicollinearity 
 

As multicollinearity primarily stems from nonexperimental data prevalent in social 

sciences, it is a phenomenon inherent to the sample. Consequently, there is no 
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single definitive method to detect it or precisely measure its intensity. Instead, what 

we rely on are various rules of thumb, some of which are informal while others are 

more structured. In the following points, we will explore several of these rules to 

gain insights into identifying and dealing with multicollinearity in regression 

analysis. 

 

5.4.4.1. A High 𝑹𝟐 but a Few Significant 𝒕-Ratios 
 

If the 𝑅2 value is high, perhaps over 0.8, it's likely that the 𝐹-test will usually 

dismiss the theory that the partial slope coefficients are all zero at the same time. 

However, the individual t-tests will reveal that none or only a small number of these 

partial slope coefficients are statistically distinct from zero. According to Kmenta 

(1986): 

it is too strong in the sense that multicollinearity is considered as 

harmful only when all of the influences of the explanatory variables 

on Y cannot be disentangled. 

 

5.4.4.2. High Pair-Wise Correlations among Regressors 
 

Another suggested rule of thumb is that if the pairwise or zero-order correlation 

coefficient between two regressors is high, say, more than 0.8, then 

multicollinearity is a serious problem. It should be noted that high zero-order 

correlations are a sufficient but not a necessary condition for the existence of 

multicollinearity because it can exist even though the zero-order or simple 

correlations are comparatively low (say, less than 0.50). 

 

5.4.4.3. Examination of Partial Correlations 
 

Farrar and Glauber (1967) suggested using partial correlation coefficients rather 

than zero-order correlations. Thus, in the regression of 𝑌 on 𝑋2, 𝑋3, and 𝑋4, a 

finding that 𝑅1.234
2  is very high but 𝑟12.3

2 , 𝑟13.24
2 , and 𝑟14.23

2  are comparatively low 

may suggest that the variables 𝑋2, 𝑋3, and 𝑋4 are highly intercorrelated and that at 

least one of these variables is superfluous. On the other hand, Wichers (1975) has 

shown that the Farrar–Glauber partial correlation test is ineffective in that a given 

partial correlation may be compatible with different multicollinearity patterns. 

 

5.4.4.4. Auxiliary Regressions 
 

A method to identify which 𝑋 variable correlates with other 𝑋 variables involve 

running a regression of each 𝑋𝑖 on the remaining 𝑋 variables and calculating the 

associated 𝑅2, referred to as 𝑅𝑖
2. Each of these regression analyses is known as an 

auxiliary regression, which is supplementary to the primary regression of 𝑌 on the 

𝑋 variables. In terms of F-test, it can be written as: 
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 𝐹𝑖 =
𝑅𝑋𝑖.𝑋2,𝑋3,…,𝑋𝑘

2 /(𝑘−2)

(1−𝑅𝑋𝑖.𝑋2,𝑋3,…,𝑋𝑘
2 )/(𝑛−𝑘+1)

      (5.15) 

If the computed 𝐹 exceeds the critical 𝐹𝑖 at the chosen level of significance, it is 

taken to mean that the particular 𝑋𝑖 is collinear with other 𝑋’s; if it does not exceed 

the critical 𝐹𝑖, we say that it is not collinear with other 𝑋’s, in which case we may 

retain that variable in the model. 
 

Instead of formally testing all auxiliary 𝑅2 values, one may adopt Klein’ rule of 

thumb developed by Klein (1962), which suggests that multicollinearity may be a 

troublesome problem only if the 𝑅2 obtained from an auxiliary regression is greater 

than the overall 𝑅2, that is, that obtained from the regression of 𝑌 on all the 

regressors. 
 

5.4.4.5. Eigenvalues and Condition Index 
 

From these eigenvalues, we can derive what is known as the condition number k 

defined as: 

 𝑘 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒
       

 𝐶𝐼 = √
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒
= √𝑘     (5.16) 

Where presents the condition index. There's a general guideline to follow: if the 

value of 𝑘 falls within the range of 100 to 1000, multicollinearity can be considered 

moderate to strong. If 𝑘 surpasses 1000, the multicollinearity is deemed severe. In 

another perspective, if the Condition Index (𝐶𝐼, calculated as the square root of 𝑘) 

lies between 10 and 30, it indicates moderate to strong multicollinearity, whereas 

if it goes beyond 30, severe multicollinearity is inferred. 
 

5.4.4.6. Tolerance and Variance Inflation Factor 
 

Variance inflation factor (𝑉𝐼𝐹) and tolerance (𝑇𝑂𝐿) are presented in equations 

(5.11) and (5.14). As a rule of thumb, if the 𝑉𝐼𝐹 of a variable exceeds 10, which 

will happen if 𝑅𝑗
2 exceeds 0.90, that variable is said be highly collinear (Kleinbaum, 

1988). 
 

5.4.4.7. Scatterplot 
 

Observing scatterplot (as available in most of the software) is a good practice to see 

how the various variables in a regression model are related. 
 

5.4.5. Remedial Measures 
 

The “do nothing” school of thought is expressed by Blanchard (1967) as follows: 
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When students run their first ordinary least squares (OLS) 

regression, the first problem that they usually encounter is that of 

multicollinearity. Many of them conclude that there is something 

wrong with OLS; some resort to new and often creative techniques 

to get around the problem. But, we tell them, this is wrong. 

Multicollinearity is God’s will, not a problem with OLS or statistical 

technique in general. 

The following general guidelines can be attempted to resolve the issue of 

multicollinearity; however, their effectiveness is subject to the intensity of the 

collinearity issue. 

 

5.4.5.1. A Priori Information 
 

Consider the following model: 

 𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝑢𝑖     (5.17) 

Here, 𝑌 represents consumption, 𝑋2 stands for income, and 𝑋3 signifies wealth. As 

previously highlighted, income and wealth variables typically exhibit high 

collinearity. But let's assume we initially believe that 𝛽3 equals 0.10𝛽2; this means 

that the rate at which consumption changes in relation to wealth is one-tenth of the 

rate at which it changes in relation to income. Given this, we can conduct the 

subsequent regression: 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 0.10𝛽2𝑋3𝑖 + 𝑢𝑖 

𝑌𝑖 = 𝛽1 + 𝛽2(𝑋2𝑖 + 0.10𝑋3𝑖) + 𝑢𝑖 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝑢𝑖       (5.18) 

Once we obtain, 𝛽̂2, we can get  𝛽̂3 from the postulated relationship between 𝛽2 and 

𝛽3. A priori information could come from previous empirical work in which the 

collinearity problem happens to be less serious or from the relevant theory 

underlying the field of study.  

 

5.4.5.2. Combining Cross Sectional and Time Series Data 
 

Pooling data is a mix of cross-sectional and time-series data to overcome the issue 

of multicollinearity. For instance, in studying the demand for automobiles in the 

US, using time series data might present a multicollinearity problem as price and 

income variables are usually highly collinear. An approach to tackle this issue, 

suggested by Tobin, involves using cross-sectional data, such as consumer panels 

or budget studies, to reliably estimate income elasticity, as prices do not vary 

significantly in these point-in-time data. The income-adjusted value of Y can then 

be used to estimate price elasticity. 

 

However, this approach may create interpretational difficulties, as it presumes that 

the income elasticity estimated from cross-sectional data is the same as that derived 
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from time series analysis. Nevertheless, this technique can be quite valuable in 

scenarios where the cross-sectional estimates do not differ considerably from one 

cross section to another. 

 

5.4.5.3. Dropping a Variable(s) and Specification Bias 
 

Another simple method to handle serious multicollinearity is to remove one of the 

collinear variables. For example, in a model studying the relationship between 

consumption, income, and wealth, dropping the wealth variable could make the 

previously insignificant income variable become very significant. 

 

However, removing a variable might introduce a specification error or bias, which 

occurs when the model used for analysis is incorrectly specified. For instance, if 

economic theory suggests that both income and wealth should be included in the 

consumption model, excluding wealth would introduce a specification bias. If we 

incorrectly exclude a variable from our model, our new estimate might either 

overestimate or underestimate the original variable's effect, leading to positive or 

negative bias, respectively. 

 

Thus, dropping a variable from a model to resolve multicollinearity could introduce 

specification bias. In some cases, this "cure" might be worse than the problem, 

because while multicollinearity might hinder precise parameter estimation, 

omitting a variable might lead us astray regarding the true parameter values. It's 

important to remember that the estimators from Ordinary Least Squares (OLS) are 

best despite near collinearity. 

 

5.4.5.4. Transformation of Variables 
 

Transformation of variables can be useful to deal with multicollinearity, a common 

problem in time series data when variables, like income and wealth, tend to move 

in the same direction over time, resulting in a high correlation between them. 

 

First Difference Form: The first method discussed is the 'first difference' 

approach. It involves running regression not on the original variables but on the 

differences between their successive values. This method often reduces 

multicollinearity as the levels of variables might be correlated, but their differences 

might not be. An added advantage of this approach is that it can make a non-

stationary time series stationary, which is desirable because a stationary time series 

doesn't change its mean and variance systematically over time. However, this 

approach has its downsides: the new error term might not satisfy the assumption 

that disturbances are uncorrelated, and there is a loss of one observation due to the 

differencing process, reducing the degrees of freedom. 
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Ratio Transformation: The second method is the 'ratio transformation', which is 

particularly useful when variables grow over time and are likely to be correlated, 

as with GDP and population. To reduce collinearity, the model is expressed on a 

per capita basis, by dividing the entire equation by the population variable. 

However, the ratio model has its drawbacks too: if the original error term is 

homoscedastic (has constant variance), the new error term will be heteroscedastic 

(has variable variance). 

 

In summary, while the first difference and ratio transformation methods can help 

alleviate multicollinearity, they come with their own set of potential issues. 

Therefore, care must be taken when deciding to use these transformations to resolve 

multicollinearity. 

 

5.4.5.5. Additional or New data 
 

Given that multicollinearity is a characteristic tied to a specific sample, it's plausible 

that a different sample, even if comprised of the same variables, might not face such 

severe collinearity as the first. At times, simply expanding the sample size (if 

feasible) could mitigate the issue of multicollinearity. 

 

5.4.5.6. Reducing Collinearity in Polynomial Regressions 
 

A special feature of polynomial regression models is that the explanatory 

variable(s) appear with various powers. Thus, the total cubic cost function involves 

the regression of total cost on output, (output)2, and (output)3. Although in practical 

scenarios it's often observed that expressing the explanatory variables as deviations 

from their mean value can significantly decrease multicollinearity, the issue might 

persist in some instances. In such cases, considering techniques like orthogonal 

polynomials may prove beneficial (Bradley & Srivastava, 1979). 

 

5.4.5.7. Other Methods of Remedying Multicollinearity  
 

Multivariate statistical techniques such as factor analysis and principal components 

or techniques such as ridge regression are often employed to “solve” the problem 

of multicollinearity. 
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5.5. Self-Assessment Questions 
 

• Define multicollinearity and describe its causes in a multiple regression 

analysis. 

• Why is multicollinearity a concern for regression models? 

• What happens when we estimate coefficients in the presence of 

multicollinearity? 

• Can a model with multicollinearity provide reliable estimates? Why or why 

not? 

• Describe two methods that can be used to detect multicollinearity. 

• Explain how variance inflation factors (VIF) can be used to identify 

multicollinearity. 

• How does multicollinearity affect the interpretability and reliability of 

regression coefficients? 

• Can multicollinearity lead to overfitting in a model? Explain. 

• Describe two remedial measures that can be used to mitigate 

multicollinearity. 

• What are the potential downsides of these remedial measures? 

• Imagine you are working with a dataset that has severe multicollinearity. 

How would you approach the problem? 

• Can multicollinearity always be avoided or resolved? Justify your answer. 
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6.1. INTRODUCTION 
 

In this comprehensive Unit, we delve into the multifaceted concept of 

heteroscedasticity, a phenomenon that plays a crucial role in regression analysis 

and econometric modeling. The chapter is meticulously structured to provide a 

holistic understanding of the subject, beginning with an exploration of the very 

nature of heteroscedasticity. This foundational section sets the stage for a detailed 

examination of the various methods to detect heteroscedasticity, both informal and 

formal. 

 

The detection section is further subdivided to cover a range of formal tests, 

including the Park Test, Glejser Test, Spearman’s Rank Correlation Test, Goldfeld-

Quandt Test, Breusch-Pagan-Godfrey Test, and White’s General 

Heteroscedasticity Test. Each of these tests is elucidated with precision, offering 

insights into their applications, advantages, and limitations. Following the 

detection, the Unit transitions into an analysis of the consequences of 

heteroscedasticity, particularly when it is unaddressed in regression models. This 

leads to the final substantive section, which presents various solutions to 

heteroscedasticity problems, offering both theoretical frameworks and practical 

tools to address this complex issue. 
 

6.2. OBJECTIVES 
 
 

The possible objectives for students studying this material could include: 
 

• understanding the Nature of Heteroscedasticity: To comprehend the 

underlying concept and characteristics of heteroscedasticity in regression 

models. 
 

• learning Detection Techniques: To acquire skills in detecting 

heteroscedasticity using both informal and formal methods, including 

understanding the underlying principles and applications of various tests. 
 

• analyzing Specific Formal Tests: To delve into the specifics of formal 

tests such as the Park Test, Glejser Test, Spearman’s Rank Correlation Test, 

Goldfeld-Quandt Test, Breusch-Pagan-Godfrey Test, and White’s General 

Heteroscedasticity Test, understanding their equations, advantages, and 

disadvantages. 
 

• evaluating the Consequences of Heteroscedasticity: To analyze the 

impact of heteroscedasticity on regression analysis, particularly when using 

Ordinary Least Squares (OLS), and to understand the implications for 

statistical inference. 
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• implementing Solutions to Heteroscedasticity Problems: To learn and 

apply various remedial measures for heteroscedasticity, including both 

theoretical frameworks and practical tools. 
 

• critical Thinking and Application: To apply the concepts learned to real-

world data and scenarios, recognizing the presence of heteroscedasticity, 

and choosing appropriate detection methods and remedies. 
 

• self-Assessment and Reflection: To engage in self-assessment through 

provided questions, reflecting on understanding and identifying areas for 

further exploration. 
 

• exploring Additional Resources: To utilize the provided textbooks, 

supplies, and additional readings for deeper exploration and mastery of the 

subject. 
 

• ethical Consideration and Best Practices: To understand the ethical 

considerations and best practices in applying these methods, recognizing 

the potential limitations and biases. 
 

• interdisciplinary Integration: To recognize the interdisciplinary nature of 

heteroscedasticity, understanding its relevance and application in 

economics, finance, social sciences, and other related fields. 

 

These objectives align with the Unit's comprehensive approach to 

heteroscedasticity, providing students with a well-rounded understanding of the 

subject, from foundational concepts to advanced applications. 
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6.3. Major Topics 
 

• Nature of the Heteroscedasticity 

• Detection of Heteroscedasticity 

• Consequences of Heteroscedasticity 

• Solutions to Heteroscedasticity Problems 

 

6.4. Summary of the Units 
 

6.4.1. Nature of the Heteroscedasticity  

 

A key presumption of the classical linear regression model is that given any selected 

values of the explanatory variables, the variance of each error term 𝑢𝑖 is a fixed 

quantity, denoted by 𝜎2. This principle is known as homoscedasticity, which 

essentially means equal (homo) dispersion (scedasticity), or in other words, equal 

variance. This can be represented symbolically as: 

 𝐸(𝑢𝑖)2 = 𝜎2  𝑖 = 1,2,3, … , 𝑛     (6.1) 

In contrast, if the conditional variance of 𝑌𝑖 increases as 𝑋 are not the same. Hence, 

there is heteroscedasticity. Symbolically, 

 𝐸(𝑢𝑖)2 = 𝜎𝑖
2        (6.2) 

Notice the subscript of 𝜎2, which reminds us that the conditional variances of 𝑢𝑖 (= 

conditional variances of 𝑌𝑖) are no longer constant. There are several reasons why 

the variances of 𝑢𝑖 may be variable, some of which are as follows: 

 

• Measurement Errors: The variance of the error term in a regression model 

may increase as a result of measurement errors in the independent variables. 

This is particularly likely if the measurement errors increase with the size 

of the variable being measured.  
 

• Structural Changes in the Economy: Changes in the structure of the 

economy over time can cause the variance of the error term to change. For 

example, if the economy is growing, the variance of the error term may 

increase over time. 
 

• Changes in Technology: Technological changes can cause the variance of 

the error term to change. For example, if a new technology is introduced, it 

may cause the variance of the error term to increase.  
 

• Changes in Policy: Changes in government policy can cause the variance 

of the error term to change. For example, if the government introduces a 

new policy, it may cause the variance of the error term to increase. 
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• Data Collection Errors: Errors in data collection can contribute to variable 

variances in the error term. Erroneous data, whether due to measurement 

inaccuracies or other inconsistencies, can lead to a distortion in the error 

term's variance. These errors may be random or systematic, and their impact 

on the error term's variance can be multifaceted and profound. 
 

• Changes in the Distribution of Income: Changes in the distribution of 

income can cause the variance of the error term to change. For example, if 

income inequality increases, it may cause the variance of the error term to 

increase. 
 

• Changes in the Variability of Explanatory Variables: Changes in the 

variability of the explanatory variables can cause the variance of the error 

term to change. For example, if the variability of the explanatory variables 

increases, it may cause the variance of the error term to increase. 
 

• Specification Errors: If the functional form of the regression model is 

incorrectly specified, it can cause the variance of the error term to change. 

For example, if a linear model is used when the true relationship is 

nonlinear, it can cause the variance of the error term to increase. 
 

In summation, the variability in the variances of the error term is a multifaceted 

issue, stemming from heteroscedasticity, model misspecification, data collection 

errors, and specific economic factors. The interplay of these elements creates a 

complex landscape that requires careful consideration and analysis. 

 

6.4.2. Detection of Heteroscedasticity  
 

There can be informal and formal methods to detect the possible presence of 

heteroscedasticity. 

 

6.4.2.1. Informal Methods 
 

Graphical methods are a popular and intuitive way to detect heteroscedasticity in a 

dataset. They allow for a visual inspection of the data, which can often reveal 

patterns or inconsistencies that might not be apparent through statistical tests alone.  

 

Graphical methods serve as an indispensable tool in the detection of 

heteroscedasticity, a phenomenon that refers to the unequal scatter of residuals 

across the range of fitted values in a regression model. These methods primarily 

revolve around visual inspection, providing an intuitive and accessible approach to 

understanding the underlying patterns in the data. 
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Firstly, scatter plots are employed to visually inspect the relationship between 

residuals and predicted values or independent variables. By plotting these variables 

against each other, one can discern whether the variance of the residuals remains 

constant. A funnel-shaped pattern or any discernible non-random pattern may be 

indicative of heteroscedasticity. This method, although simple and intuitive, is 

inherently subjective and may require corroboration through more definitive tests. 

 

A seminal study by Cook and Weisberg titled "Diagnostics for heteroscedasticity 

in regression" (1983) provides a diagnostic test for heteroscedasticity based on the 

score statistic and presents a graphical procedure to complement the score test. 

They emphasize the importance of both graphical and non-graphical procedures, 

with the usual graphical procedure consisting of plotting the ordinary least squares 

residuals against fitted values or an explanatory variable. 

 

Secondly, the Residual vs. Fitted Values Plot, a specific type of scatter plot, is 

utilized to detect non-constant variance in the residuals. This plot juxtaposes the 

residuals from the regression model against the fitted values, allowing for a direct 

visual check for one of the key assumptions of linear regression. A random scatter 

around zero signifies homoscedasticity, while any discernible pattern may signal 

heteroscedasticity. 

 

In conclusion, graphical methods, though exploratory in nature, offer a valuable 

starting point in the analysis of heteroscedasticity. They bridge the gap between 

complex statistical concepts and intuitive visual understanding, providing a 

multifaceted perspective on the data. However, their subjective nature necessitates 

the use of complementary statistical tests to arrive at a definitive conclusion 

regarding the presence of heteroscedasticity. 

 

6.4.2.2. Formal Methods 
 

6.4.2.2.1. Park Test 
 

The Park test, named after R. E. Park, is a formal method used to detect 

heteroscedasticity in regression models. The Park test formalizes the graphical 

method by suggesting that the variance of the error term 𝜎𝑖
2 is a function of the 

explanatory variable 𝑋𝑖. The functional form suggested ln 𝜎𝑖
2 = ln 𝜎2 + 𝛽 ln 𝑋𝑖 +

𝑣𝑖,  where 𝑣𝑖  is the stochastic disturbance term. Following are the steps: 
 

• Step 1 - Estimate the Original Model: Run the OLS regression 

disregarding the heteroscedasticity question and obtain residuals 𝑢̂𝑖. 

• Step 2 – Assume Error Variance and Run the Regression: Assume that 

the error variance is related to the explanatory variable. 



88 

 

ln 𝜎𝑖
2 = ln 𝜎2 + 𝛽 ln 𝑋𝑖 + 𝑣𝑖     (6.3) 

Further, run the regression using the above equation. 

• Step 3 – Interpret the Results: If 𝛽 turns out to be statistically significant, 

it would suggest that heteroscedasticity is present in the data. If it turns out 

to be insignificant, we may accept the assumption of homoscedasticity. 

 

Goldfeld and Quandt (1972) have posited that the error term within the test's 

equation may itself be heteroscedastic, undermining the OLS assumptions. 

Additionally, the test's reliance on a specific functional form for the relationship 

between error variance and the explanatory variable may not always hold true, 

adding a layer of complexity and potential limitation to its application. Thus, while 

the Park test provides a valuable tool in certain scenarios, its nuanced intricacies 

necessitate careful consideration in empirical research. 

 

The Park test, as described in Park (1966), provides a formalized approach to 

detecting heteroscedasticity. While it offers an empirically appealing and 

exploratory method, it also comes with some recondite challenges, such as potential 

heteroscedasticity in the error term and assumptions about the functional form. 

These complexities necessitate careful consideration and application of the test in 

empirical research. 

 

6.4.2.2.2. Glejser Test 

 

The Glejser test is another method used to detect heteroscedasticity in regression 

models. Here's a detailed description of the test, including the steps, equations, and 

a short paragraph on the advantages and disadvantages, as described in the provided 

document: 

 

• Step 1 – Estimate the Original Model: Run the OLS regression 

disregarding the heteroscedasticity question 𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝑢𝑖 and 

obtain residuals 𝑢̂𝑖. 

• Step 2 – Regress Absolute Values of Residuals on Explanatory 

Variable: Glejser suggests regressing the absolute values of 𝑋 variable that 

is suspected to be the cause of heteroscedasticity. 
|𝑢̂𝑖| = 𝛼1 + 𝛼2𝑋𝑖 + 𝑣𝑖     (6.4) 

Where 𝑣𝑖 is the error term of this regression. Glejser also proposed 

following functional forms, out of which anyone can be used: 

|𝑢̂𝑖| = 𝛼1 + 𝛼2√𝑋𝑖 + 𝑣𝑖     (6.5) 

|𝑢̂𝑖| = 𝛼1 + 𝛼2
1

𝑋𝑖
+ 𝑣𝑖     (6.6) 
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|𝑢̂𝑖| = 𝛼1 + 𝛼2
1

√𝑋𝑖
+ 𝑣𝑖     (6.7) 

|𝑢̂𝑖| = √𝛼1 + 𝛼2𝑋𝑖 + 𝑣𝑖     (6.8) 

|𝑢̂𝑖| = √𝛼1 + 𝛼2𝑋𝑖
2 + 𝑣𝑖     (6.9) 

• Step 3 – Interpret the Results: If the coefficient of 𝑋𝑖 is statistically 

significant, it suggests the presence of heteroscedasticity. 

 

The Glejser test, akin in spirit to the Park test, offers a method to detect 

heteroscedasticity by focusing on the relationship between the absolute values of 

residuals and the suspected explanatory variable. One of its advantages is its 

applicability to large samples, providing generally satisfactory results. It may also 

be used in small samples as a qualitative device to learn about heteroscedasticity. 

However, the test's simplicity may also be seen as a limitation, as it does not provide 

a comprehensive understanding of the underlying structure of heteroscedasticity. 

The test's reliance on the specific form of the relationship between the residuals and 

the explanatory variable may also pose challenges in some applications. 

 

The Glejser test provides a straightforward and practical approach to detecting 

heteroscedasticity, especially in large samples. While it offers an accessible 

method, its recondite limitations and assumptions necessitate careful consideration 

in empirical research. The test's development and application are well-documented 

in studies by Glejser (1969). 

 

6.4.2.2.3. Spearman’s Rank Correlation Test 

 

The Spearman's Rank Correlation Test is a statistical method used to detect 

heteroscedasticity in regression models.  

 

• Step 1 – Estimate the Original Model: Run the OLS regression 

disregarding the heteroscedasticity question 𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝑢𝑖 and 

obtain residuals 𝑢̂𝑖. 
 

• Step 2 – Rank the Absolute Values of Residuals: Ignoring the sign of 𝑢̂𝑖, 

take their absolute value |𝑢̂𝑖|, rank both |𝑢̂𝑖| and 𝑋𝑖 (or 𝑌̂𝑖) according to an 

ascending or descending order. By using these ranks compute Spearman’s 

Rank Correlation Coefficient. 
 

• Step 3 – Test the Significance: Assuming that the population rank 

correlation coefficient 𝜌𝑠 is zero and 𝑛 > 8, the significance of the sample 

𝑟𝑆 can be tested by the 𝑡 test as follows: 
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𝑡 =
𝑟𝑆√𝑛−2

√1−𝑟𝑆
2

       (6.10) 

 With df 𝑛 − 2. 

• Step 4 – Interpret the Results: If the computed 𝑡 value exceeds the critical 

𝑡 value, heteroscedasticity may be accepted; otherwise, it may be rejected. 

 

The Spearman's Rank Correlation Test offers a non-parametric approach to 

detecting heteroscedasticity, making it applicable without assuming a specific 

distribution for the data. It provides a simple and intuitive method that can be 

particularly useful in exploratory data analysis. However, the test's simplicity may 

also be seen as a limitation, as it does not provide a comprehensive understanding 

of the underlying structure of heteroscedasticity. Moreover, the test's reliance on 

ranking may pose challenges in some applications, especially when dealing with 

tied ranks or small sample sizes. 

 

The Spearman's Rank Correlation Test, as a non-parametric method, provides a 

straightforward approach to detecting heteroscedasticity. While it offers an 

accessible method, its recondite limitations and assumptions necessitate careful 

consideration in empirical research. The test's development and application are 

well-documented in statistical literature and can be a valuable tool in econometric 

analysis.  

 

6.4.2.2.4. Goldfeld-Quandt Test 
 

The Goldfeld-Quandt Test is a widely used method to detect heteroscedasticity in 

regression models. 
 

• Step 1 – Divide the Data: Order the data based on the explanatory variable 

suspected to be related to the heteroscedastic variance. Omit a certain 

number of central observations (𝑐) and divide the remaining data (𝑛 − 𝑐) 

into two groups each having (𝑛 − 𝑐)/2 observations.   
 

• Step 2 – Estimate two Separate Regressions and Compute RSS: 

Estimate two separate regressions for the two groups. 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 𝑢𝑖   (6.11) 

Compute the residual sum of squares (RSS) for each group. 𝑅𝑆𝑆1 

representing the RSS from the regression corresponding to the smaller 𝑋𝑖 

values and 𝑅𝑆𝑆2 that from the larger 𝑋𝑖 values. 
 

• Step 3 – Compute the Test Statistic: The test statistic is the ratio of the 

two RSS values. 
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𝐹 = 𝜆 =
𝑅𝑆𝑆2/df

𝑅𝑆𝑆1/df
      (6.12) 

These RSS each have [(𝑛 − 𝑐)/2] − 𝑘 degree of freedom, where 𝑘 is the 

number of parameters to be estimated, including the intercept. 
 

• Step 4 – Interpret the Results: If the computed 𝐹 value exceeds the critical 

𝐹 value at the chosen level of significance, heteroscedasticity may be 

accepted; otherwise, it may be rejected. 

 

The Goldfeld-Quandt Test offers a simple and intuitive method to detect 

heteroscedasticity by focusing on the relationship between the variance of the error 

term and one of the explanatory variables. One of its advantages is its applicability 

to various types of regression models and its ability to sharpen the difference 

between small and large variance groups. However, the test's effectiveness depends 

on how the central observations are omitted, and choosing the wrong number can 

diminish the power of the test. Moreover, the test requires reordering the 

observations, which may pose challenges in some applications. 

 

The Goldfeld-Quandt Test, developed by Stephen Goldfeld and Richard Quandt, 

provides a practical approach to detecting heteroscedasticity. While it offers an 

accessible method, its recondite limitations and assumptions necessitate careful 

consideration in empirical research. The test's development and application are 

well-documented in econometric literature, including Monte Carlo experiments 

done by Goldfeld and Quandt, and it remains a valuable tool in econometric 

analysis. 

 

6.4.2.2.5. Breusch-Pagan-Godfrey Test 
 

The Breusch-Pagan-Godfrey test is a combination of methods introduced by Trevor 

Breusch, Adrian Pagan, and L. Godfrey. It's designed to detect heteroscedasticity, 

specifically whether the variances of the error terms in a regression model are 

constant or not. 
 

The test procedure is explained in the following steps: 
 

• Step 1 - Estimate the Original Model: Fit the original regression model 

and obtain the residuals 𝑢̂𝑖. 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖 + 𝑢𝑖   (6.13) 
 

• Step 2 - Calculate the Squared Residuals: Square the residuals to obtain 

a measure of the variance. 

𝜎̃2 =
∑ 𝑢𝑖

2

𝑛
       (6.14) 

 This is maximum likelihood estimator (ML) of 𝜎2. 
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• Step 3 – Calculate 𝑷𝒊: Construct the variable 𝑃𝑖 defined as: 

𝑃𝑖 =
𝑢𝑖

2

𝜎̃2        (6.15) 

 

• Step 4 – Regress 𝑷𝒊 on Z’s: Regress the constructed 𝑃𝑖 from previous step 

on Z’s. 

𝑃𝑖 = 𝛼1 + 𝛼2𝑍2𝑖 + 𝛼3𝑍3𝑖 + ⋯ + 𝛼𝑚𝑍𝑚𝑖 + 𝑣𝑖  (6.16) 

Where 𝑣𝑖 is the residual term of this regression. 
 

• Step 5 – Calculate Test Statistic: The test statistic is computed using the 

ESS (explained sum of squares) from the regression. 

Θ =
1

2
(𝐸𝑆𝑆)       (6.17) 

Assuming 𝑢𝑖 are normally distributed, Θ follows the chi-square distribution 

with (m − 1) degree of freedom.  
 

• Step 6 – Compare with Chi-Squared Distribution: Compare the test 

statistic with the critical value from the chi-squared distribution to decide. 

Therefore, if in an application the computed Θ (= 𝜒2) exceeds the critical 

𝜒2 value at the chosen level of significance, one can reject the hypothesis 

of homoscedasticity; otherwise, one does not reject it. 

 

The Breusch-Pagan-Godfrey test, a prominent tool for detecting heteroscedasticity, 

offers several advantages. It avoids some of the limitations found in other tests, 

such as the Goldfeld-Quandt test, by providing a more flexible approach that does 

not rely solely on identifying the correct variable with which to order the 

observations. This flexibility extends to its applicability across various types of 

regression models, not just linear ones, making it a versatile tool. Moreover, the 

BPG test is often more sensitive to heteroscedasticity, enhancing its power in 

identifying non-constant variance in error terms. However, this test is not without 

its disadvantages. It is sensitive to the assumption of normality, which can affect its 

power and validity if the error terms are not normally distributed. The complexity 

in choosing the test statistic might make it more challenging to understand and 

implement. Furthermore, as a large-sample test, its application in small samples 

may not be strictly justified, and other tests may be statistically more powerful in 

both large and small samples. These nuances reflect the intricate balance of 

strengths and potential challenges associated with the Breusch-Pagan-Godfrey test 

in the field of econometrics. 

 

The Breusch-Pagan-Godfrey test offers a nuanced approach to detecting 

heteroscedasticity, balancing sensitivity, and flexibility. However, its sensitivity to 

normality and complexity in computation may pose challenges. The test's 
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development and application are well-documented in studies by Breusch and Pagan 

(1979) and Godfrey (1978).  

 

6.4.2.2.6. White’s General Heteroscedasticity Test 
 

White's General Heteroscedasticity Test is a well-known method used to detect 

heteroscedasticity in regression models. White's General Heteroscedasticity Test, 

developed by White (1980). The White test can be a test of (pure) heteroscedasticity 

or specification error or both. Here's a detailed description including the steps are 

as follow: 
 

• Step 1 - Estimate the Original Model: Fit the original regression model 

and obtain the residuals 𝑢̂𝑖. 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝑢𝑖    (6.18) 
 

• Step 2 – Regress Squared Residuals on Explanatory Variables: White 

suggests regressing the squared residuals on the original explanatory 

variables, their squared terms, and cross-product terms. 

𝑢̂𝑖
2 = 𝛼1 + 𝛼2𝑋2𝑖 + 𝛼3𝑋3𝑖 + 𝛼4𝑋2𝑖

2 + 𝛼5𝑋3𝑖
2 + 𝛼6𝑋2𝑖𝑋3𝑖 + 𝑣𝑖 

       (6.19) 

Obtain the 𝑅2 from this auxiliary regression. 
 

Step 3 – Compute Test Statistic: The test statistic is 𝑅2 (𝑛𝑅2~𝜒df
2 ), where 

𝑛 is the sample size and 𝑅2 is the coefficient of determination from previous 

step. 
 

• Step 4 – Interpret the Results: If the computed value exceeds the critical 

chi-square value at the chosen level of significance, heteroscedasticity may 

be accepted; otherwise, it may be rejected. If it does not exceed the critical 

chi-square value, there is no heteroscedasticity, which is to say that in the 

auxiliary regression 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝛼5 = 𝛼6 = 0. 

 

If a model has several regressors, then introducing all the regressors, their squared 

terms, and their cross products can quickly consume degrees of freedom. In this 

case, the test can be modified to conserve degrees of freedom and use only 

explanatory variables and their squared terms in the auxiliary regression. 

 

White's General Heteroscedasticity Test offers a robust method to detect 

heteroscedasticity without relying on the normality assumption, making it versatile 

and easy to implement. One of its advantages is its ability to test for both 

heteroscedasticity and specification error. However, the test's effectiveness may be 

limited by its consumption of degrees of freedom, especially when introducing all 

the regressors, their squared terms, and cross products. Additionally, the test may 
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have low power against alternatives and is of little help in identifying the factors or 

variables that cause heteroscedasticity. 

 

6.4.3. Consequences of Heteroscedasticity  
 

The consequences of using Ordinary Least Squares (OLS) in the presence of 

heteroscedasticity are multifaceted and can have significant implications for 

statistical inference. Here's a detailed exploration of these consequences: 
 

• Inefficiency of OLS Estimators: In the presence of heteroscedasticity, 

OLS estimators remain linear and unbiased but lose their efficiency 

(minimum variance property). This means that there may be other 

estimators that provide a more accurate estimate of the population 

parameters. 
 

• Overestimation of Standard Errors: The usual OLS standard errors are 

either too large (for the intercept) or generally too small (for the slope 

coefficient) in relation to those obtained by OLS allowing for 

heteroscedasticity. This inconsistency overestimates the true standard error 

obtained by the Generalized Least Squares (GLS) procedure. 
 

• Invalidity of Conventional t and F Tests: If heteroscedasticity is present, 

the conventional t and F tests become invalid. This is because the variance 

formula used in these tests does not take into account the non-constant 

variance of the error term, leading to inaccurate results. 
 

• Difficulty in Applying GLS: Although GLS is superior in the presence of 

heteroscedasticity, it is not always easy to apply in practice. Unless 

heteroscedasticity is very severe, one may not abandon OLS in favor of GLS 

or Weighted Least Squares (WLS). 
 

• Potential Misinterpretation of Coefficients: Confidence intervals based 

on OLS that do not account for heteroscedasticity will be unnecessarily 

larger. As a result, what appears to be a statistically insignificant coefficient 

may, in fact, be significant if the correct confidence intervals were 

established based on the GLS procedure. 
 

• Challenges in Correction: Even if heteroscedasticity is suspected and 

detected, it is not easy to correct the problem. If the sample is large, one can 

obtain White’s heteroscedasticity-corrected standard errors of OLS 

estimators, but otherwise, it may require educated guesses of the likely 

pattern of heteroscedasticity. 
 

The presence of heteroscedasticity in a regression model poses a serious problem, 

particularly when using OLS. The recondite nature of these consequences 
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necessitates a careful approach to model specification and testing. In short, if we 

persist in using the usual testing procedures despite heteroscedasticity, whatever 

conclusions we draw or inferences we make may be very misleading. The message 

is clear: In the presence of heteroscedasticity, it is advisable to use methods like 

GLS that explicitly account for the non-constant variance of the error term. 

However, the practical challenges in applying these methods and the nuanced 

intricacies of the consequences mean that empirical researchers must exercise 

caution and consider the specific context of their analysis. 

 

6.4.4. Solutions to Heteroscedasticity Problems  

 

The remedial measures for heteroscedasticity are essential to ensure the efficiency 

and validity of the estimators in regression analysis. Here's a detailed exploration 

of these measures: 

 

6.4.4.1. When 𝝈𝒊
𝟐 is Known 

 

If 𝜎𝑖
2 is known then the most significant method of correcting heteroscedasticity is 

by means of Weighted Least Squares (WLS), for the estimators thus obtained are 

BLUE. This method involves transforming the original data by dividing each 

observation by the known standard deviation of the error term. This creates a new 

model where the error term has a constant variance.  

 
𝑌𝑖

𝜎𝑖
= 𝛽1

1

𝜎𝑖
+ 𝛽2

𝑋𝑖

𝜎𝑖
+

𝑢𝑖

𝜎𝑖
       (6.20) 

 

6.4.4.1. When 𝝈𝒊
𝟐 is Not Known 

 

6.4.4.1.1. White's Heteroscedasticity-Corrected Standard Errors 
 

In large samples, one can obtain White's heteroscedasticity-corrected standard 

errors of OLS estimators and conduct statistical inference based on these standard 

errors. Incidentally, White’s heteroscedasticity corrected standard errors are also 

known as robust standard errors.  

 

6.4.4.1.2. Plausible Assumptions about Heteroscedasticity Pattern 
 

Based on OLS residuals, one can make educated guesses of the likely pattern of 

heteroscedasticity and transform the original data in such a way that in the 

transformed data there is no heteroscedasticity. Several plausible assumptions 

about the heteroscedasticity are as follow: 

• Assumption 1: The error variance is proportional to 𝑋𝑖
2. 

𝐸(𝑈𝑖
2) = 𝜎2𝑋𝑖

2      (6.21) 
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one may transform the original model as follows. 
𝑌𝑖

𝑋𝑖
=

𝛽1

𝑋𝑖
+ 𝛽2

𝑋𝑖

𝑋𝑖
+

𝑢𝑖

𝑋𝑖
= 𝛽1

1

𝑋𝑖
+ 𝛽2 + 𝑣𝑖   (6.22)  

 

• Assumption 2: The error variance is proportional to 𝑋𝑖.  
 

𝐸(𝑈𝑖
2) = 𝜎2𝑋𝑖       (6.23) 

 then the original model can be transformed as follows: 
𝑌𝑖

√𝑋𝑖
=

𝛽1

√𝑋𝑖
+ 𝛽2

𝑋𝑖

√𝑋𝑖𝑖

+
𝑢𝑖

√𝑋𝑖
= 𝛽1

1

√𝑋𝑖
+ 𝛽2√𝑋𝑖 + 𝑣𝑖   (6.24) 

 

• Assumption 3: The error variance is proportional to the square of the mean 

value of 𝑌. 

𝐸(𝑈𝑖
2) = 𝜎2[𝐸(𝑌𝑖)]2      (6.25) 

Therefore, if we transform the original equation as follows: 

 
𝑌𝑖

𝐸(𝑌𝑖)
=

𝛽1

𝐸(𝑌𝑖)
+ 𝛽2

𝑋𝑖

𝐸(𝑌𝑖)
+

𝑢𝑖

𝐸(𝑌𝑖)
= 𝛽1

1

𝐸(𝑌𝑖)
+ 𝛽2

𝑋𝑖

𝐸(𝑌𝑖)
+ 𝑣𝑖 (6.26) 

 

• Assumption 4: A log transformation such as 

ln 𝑌𝑖 = 𝛽1 + 𝛽2 ln 𝑋𝑖 + 𝑢𝑖     (6.27) 

very often reduces heteroscedasticity when compared with the regression  
𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝑢𝑖. This result arises because log transformation 

compresses the scales in which the variables are measured, thereby reducing 

a tenfold difference between two values to a twofold difference. 

 

The remedial measures for heteroscedasticity are multifaceted and require careful 

consideration of the specific context of the analysis. While methods like Weighted 

Least Squares and White's heteroscedasticity-corrected standard errors offer robust 

solutions, the recondite nature of these measures and the potential for overreaction 

necessitate a nuanced approach. The choice of remedy should be guided by the 

severity of the heteroscedasticity, the known or unknown nature of the error 

variance, and the overall fit and validity of the model. 

 

These insights align with the broader econometric literature, emphasizing the 

importance of understanding the underlying structure of the data and the specific 

assumptions of the chosen model. The remedial measures for heteroscedasticity are 

not one-size-fits-all solutions but rather tools that can be adapted and applied as 

needed to ensure the integrity and interpretability of regression analysis. 
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6.5. Self-Assessment Questions 
 

• Define heteroscedasticity and explain how it differs from homoscedasticity. 

• What are the common causes of heteroscedasticity in regression models? 

• Describe the difference between informal and formal methods of detecting 

heteroscedasticity. 

• How does the Spearman’s Rank Correlation Test work, and in what 

situations is it most applicable? 

• Compare and contrast the Glejser Test and the Goldfeld-Quandt Test. What 

are the key advantages and disadvantages of each? 

• Explain the underlying principles of White’s General Heteroscedasticity 

Test. How does it differ from the Breusch-Pagan-Godfrey Test? 

• What are the main consequences of using OLS in the presence of 

heteroscedasticity? Provide examples. 

• How does heteroscedasticity affect the efficiency and validity of OLS 

estimators? 

• Describe the method of Weighted Least Squares (WLS) and explain how it 

can be used to correct heteroscedasticity? 

• What is White's heteroscedasticity-corrected standard errors, and when are 

they most appropriately used? 

• Imagine you are working with a dataset that exhibits heteroscedasticity. 

Outline the steps you would take to detect and correct this issue. 

• Critically evaluate the statement: "Heteroscedasticity has never been a 

reason to throw out an otherwise good model." Provide evidence from the 

chapter to support your answer. 

• Select one of the additional readings provided in the chapter and summarize 

its main findings or arguments related to heteroscedasticity. 

• How would you apply the concepts learned in this unit to a real-world 

scenario in your field of interest? 
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7.1. INTRODUCTION 
 

Autocorrelation is a prevalent phenomenon in time-series data and is the central 

focus of this Unit. The exploration begins by elucidating the nature of 

autocorrelation, defining what it means, and how it manifests within various data 

sets. Understanding this foundational concept sets the stage for a deeper 

examination of its consequences, revealing how autocorrelation can impact 

statistical inference and the interpretation of models. The unit then delves into 

various methods for detecting autocorrelation, providing both visual and statistical 

tools. The graphical method offers an intuitive way to visualize autocorrelation, 

while formal tests such as the Runs Test, Durbin-Watson d test, and Breusch–

Godfrey test provide rigorous statistical means to detect it. 

 

Recognizing that detection is only part of the solution, the unit also covers remedial 

measures for autocorrelation. This section provides strategies for addressing the 

issue, both when the autocorrelation parameter (𝜌) is known and when it is 

unknown. Various techniques are explored, including the First Difference Method, 

methods based on Durbin-Watson d statistics, estimating ρ from the residuals, and 

iterative methods of estimating 𝜌. 

 

Overall, this unit offers a comprehensive examination of autocorrelation, from its 

fundamental nature to advanced detection and remediation techniques. It serves as 

a vital resource for researchers, analysts, and students seeking to understand and 

address autocorrelation in their data analysis endeavors. Whether you are new to 

the subject or looking to deepen your understanding, this unit provides the insights 

and tools needed to navigate the complex landscape of autocorrelation. 

 

7.2. OBJECTIVES 
 

The objectives for students studying the unit on autocorrelation are designed to 

provide a comprehensive understanding of this complex statistical concept. In the 

end of the unit, students should be able to: 

 

• understand the Nature of Autocorrelation: Define autocorrelation and 

explain how it manifests in time-series data. Recognize the underlying 

patterns that may lead to autocorrelation. 
 

• identify the Consequences of Autocorrelation: Analyze how 

autocorrelation can affect statistical inference and model interpretation. 

Understand the potential biases and inefficiencies it may introduce. 
 

• detect Autocorrelation through Various Methods: Utilize both graphical 
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and formal statistical tests to detect autocorrelation. Apply methods such as 

the Runs Test, Durbin-Watson d test, and Breusch–Godfrey test. 
 

• implement Remedial Measures: Develop strategies to address 

autocorrelation, considering both known and unknown autocorrelation 

parameters (𝜌). Explore techniques like the First Difference Method, 

Durbin-Watson d statistics, and iterative methods. 
 

• apply Practical Solutions: Translate theoretical understanding into 

practical application. Demonstrate the ability to diagnose and remedy 

autocorrelation in real-world data sets. 
 

• evaluate Different Approaches: Compare and contrast various detection 

and remediation techniques, recognizing the advantages and disadvantages 

of each. 
 

• cultivate Critical Thinking: Encourage critical evaluation of 

autocorrelation, fostering the ability to question assumptions, interpret 

results, and make informed decisions in data analysis. 
 

• integrate Knowledge with Technology: Leverage modern computing 

tools to efficiently implement detection and remediation methods, 

enhancing practical skills in data analysis. 
 

• foster Lifelong Learning: Instill a curiosity and willingness to continue 

exploring autocorrelation and related statistical concepts, recognizing the 

evolving nature of the field. 
 

These objectives align with the unit's comprehensive examination of 

autocorrelation, aiming to equip students with the knowledge, skills, and critical 

thinking necessary to effectively understand and address this complex statistical 

phenomenon. 
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7.3. Major Topics 
 

• Nature of The Autocorrelation 

• Consequences of Autocorrelation  

• Methods of detection of Autocorrelation 

• Remedial Measures 

 

7.4. Summary of the Units 
 

7.4.1. Nature of the Autocorrelation  

 

Autocorrelation, also known as serial correlation, refers to the correlation between 

members of a series of observations ordered in time (as in time series data) or space 

(as in cross-sectional data). In the context of regression, the classical linear 

regression model assumes that autocorrelation does not exist in the disturbances 𝑢𝑖. 

Symbolically, the absence of autocorrelation is represented in the classical linear 

regression model's assumptions: 

 𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗|𝑋𝑖, 𝑋𝑗) = 𝐸(𝑢𝑖𝑢𝑗) = 0 𝑖 ≠ 𝑗   (7.1) 

However, if there is such a dependence, we have autocorrelation. Symbolically, 

𝐸(𝑢𝑖𝑢𝑗) ≠ 0    𝑖 ≠ 𝑗   (7.2) 

In this situation, the disruption caused by a strike this quarter may very well affect 

output next quarter, or the increases in the consumption expenditure of one family 

may very well prompt another family to increase its consumption expenditure. 
 

There are several reasons of serial correlation, some of which are as follows: 
 

• Inertia: Inertia refers to the sluggishness or cycles observed in most 

economic time series such as GNP, price indexes, production, employment, 

and unemployment. These cycles can create patterns, leading to 

autocorrelation. 
 

• Specification Bias: Excluded Variables Case or Incorrect Functional 

Form: Sometimes, patterns in residuals are observed because the model is 

mis-specified. This could be due to the exclusion of some essential variables 

or incorrect functional form. A simple test of this would be to run different 

models and see whether autocorrelation disappears when the correct model 

is run. 
 

• Cobweb Phenomenon: The Cobweb Phenomenon is a common occurrence 

in the supply of many agricultural commodities. It describes a situation 

where the supply reacts to price changes with a delay, typically one time 
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period. This lag happens because supply decisions, such as planting crops, 

take time to implement due to the gestation period. For example, farmers' 

decisions at the beginning of the year for planting crops are influenced by 

the prices from the previous year. This relationship can be represented by 

the equation: 

𝑆𝑢𝑝𝑝𝑙𝑦𝑡 = 𝛽1 + 𝛽2𝑃𝑡−1 + 𝑢𝑡    (7.3) 

If the price at the end of period 𝑡, denoted as 𝑃𝑡, turns out to be lower than 

the price in the previous period 𝑃𝑡−1, farmers may decide to produce less in 

the next period 𝑡 + 1. This leads to a situation where disturbances 𝑢𝑡 are 

not random. If farmers overproduce in year 𝑡, they are likely to reduce their 

production in 𝑡 + 1, and this pattern continues, creating a cobweb-like 

pattern. 

 

In essence, the Cobweb Phenomenon illustrates a cyclical pattern in 

agricultural supply, driven by delayed reactions to price changes. This 

pattern can lead to non-random disturbances in supply, reflecting the 

strategic adjustments made by farmers in response to price fluctuations. 

 

• Lags of Variables: In time series regression, lags can be a significant 

source of autocorrelation, particularly when modeling relationships like 

consumption expenditure on income. It's common to find that current 

consumption expenditure depends not only on current income but also on 

the consumption expenditure of the previous period. This relationship can 

be expressed as: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡 = 𝛽1 + 𝛽2𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽3𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡−1 + 𝑢𝑡 

       (7.4) 

This type of regression is referred to as autoregression, as it includes the 

lagged value of the dependent variable (consumption) as one of the 

explanatory variables. The rationale behind this model is that consumers 

tend not to change their consumption habits quickly due to psychological, 

technological, or institutional reasons. If the lagged term (previous 

consumption) is neglected in the equation, the resulting error term will exhibit 

a systematic pattern. This pattern reflects the influence of lagged consumption 

on current consumption, leading to autocorrelation in the error term. 

 

• “Manipulation” of Data: In empirical analysis, manipulating raw data, 

such as averaging monthly observations to create quarterly data, can 

introduce autocorrelation. This smoothing process dampens fluctuations, 

creating a systematic pattern in the data. Other manipulation techniques, 

like interpolation or extrapolation, can also impose patterns that might not 

exist in the original data, leading to autocorrelation. Essentially, data 
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"massaging" techniques can inadvertently affect the statistical properties of 

the data, including the presence of autocorrelation. 
 

• Data Transformation: When studying relationships between variables like 

consumption expenditure and income, the level form and the difference 

form may be transformed into logarithms or percentage changes. This 

transformation into the growth form can lead to autocorrelation in the error 

term. Even if the original error term satisfies the standard OLS assumptions, 

including no autocorrelation, the transformed error term in the dynamic 

regression models (involving lagged regressands) can become 

autocorrelated. This illustrates how data transformation can introduce 

autocorrelation into the analysis. 
 

• Nonstationarity: In dealing with time series data, nonstationarity can be a 

source of autocorrelation. A time series is considered stationary if its 

characteristics like mean, variance, and covariance do not change over time. 

If these characteristics do change, the time series is nonstationary. In a 

regression model, if both dependent and independent variables are 

nonstationary, the error term may also become nonstationary, leading to 

autocorrelation. This phenomenon can be either positive or negative, 

although most economic time series generally exhibit positive 

autocorrelation. Nonstationarity, therefore, is a key factor that can introduce 

autocorrelation into time series analysis. 
 

These sources reflect the complexity of time series data and the challenges in 

modeling relationships between variables. Understanding and addressing these 

sources is essential for accurate and reliable empirical analysis, as autocorrelation 

can affect the efficiency and validity of statistical inferences. Whether it's through 

the nature of the data, the modeling approach, or the transformation techniques, 

autocorrelation can emerge, requiring careful consideration and correction in 

econometric practice. 
 

7.4.2. Consequences of Autocorrelation  
 

The consequences of using Ordinary Least Squares (OLS) in the presence of 

autocorrelation are multifaceted and can lead to significant issues in statistical 

analysis. Here's a revised summary with academic citations: 
 

• OLS Estimators Remain Unbiased but Lose Efficiency: In the presence 

of autocorrelation, the OLS estimators continue to be unbiased, consistent, 

and asymptotically normally distributed. However, they lose their 

efficiency, meaning that they are no longer the Best Linear Unbiased 

Estimators (BLUE). This inefficiency can lead to incorrect inferences in 

hypothesis testing. 
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• Inaccurate Variance Estimation: The situation becomes potentially 

serious if the variance of the OLS estimators is calculated without 

considering autocorrelation. The residual variance is likely to underestimate 

the true value, leading to errors in statistical analysis. This underestimation 

can also result in an overestimation of the 𝑅2 value, which measures the 

goodness of fit of the model. 
 

• Inapplicability of Usual Tests: Due to the loss of efficiency, the usual 𝑡, 

𝐹, and 𝜒2 tests cannot be legitimately applied. This undermines the 

reliability of the statistical conclusions drawn from the model (Page 474; 

Cai et al., 2021). 
 

• Remedial Measures Depend on the Nature of Autocorrelation: The 

appropriate remedy for dealing with autocorrelation depends on the specific 

nature of the interdependence among the disturbances. Understanding the 

underlying cause of autocorrelation is essential for applying the correct 

corrective measures. 
 

• Potential Misinterpretation of Results: If autocorrelation is disregarded, 

and the usual assumptions of the classical model are mistakenly believed to 

hold true, this can lead to serious misinterpretation of the results. The 

consequences of this oversight can be far-reaching, affecting both the 

understanding of the underlying phenomena and the decision-making 

processes based on the model's results. 
 

In conclusion, the presence of autocorrelation in a regression model poses 

significant challenges to the use of OLS. It affects the efficiency of the estimators, 

the accuracy of variance estimation, and the applicability of standard statistical 

tests. Careful consideration of the nature of autocorrelation and the application of 

appropriate remedial measures are essential to ensure the validity and reliability of 

the statistical analysis. 

 

7.4.3. Methods of Detection of Autocorrelation  
 

7.4.3.1. Graphical Method 
 

In the realm of statistical analysis, the assumption of non-autocorrelation is often 

pivotal, especially in the context of the classical model. However, the population 

disturbances, denoted by 𝑢𝑡, are not directly observable. Instead, their proxies, the 

residuals 𝑢̂𝑡, are obtained through the Ordinary Least Squares (OLS) procedure. 

The Graphical Method serves as an instrumental approach to discerning the 

presence of autocorrelation by examining these residuals. 
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The method commences by plotting the actual or standardized residuals. This can 

be further augmented by plotting current residuals against past residuals. Such 

graphical representations can reveal patterns or systematic behaviors in the 

residuals, indicative of autocorrelation. For instance, a correlogram, which is a plot 

of the sample autocorrelation function against the lag, can be used to ascertain if a 

particular time series is stationary. In the context of a purely white noise process, 

the autocorrelations at various lags hover around zero, and if the correlogram of an 

actual time series resembles that of a white noise time series, it can be inferred that 

the time series is probably stationary. 

 

Furthermore, the examination of residuals is not only a visual diagnostic tool to 

detect autocorrelation but also serves to identify other issues such as 

heteroscedasticity or model specification errors. Distinct patterns in the plot of 

residuals may reveal such errors, thereby underscoring the multifaceted utility of 

this method. 

 

In conclusion, the Graphical Method is a versatile and intuitive approach to 

detecting autocorrelation. By visually representing the residuals and their 

relationships, it provides insights into the underlying structure of the data. This 

method, although seemingly simple, is imbued with profound implications for 

statistical modeling and hypothesis testing. 

 

7.4.3.2. Formal Tests for Detection of Autocorrelation 
 

7.4.3.2.1. The Runs Test 
 

Autocorrelation, a phenomenon where error terms in a time series are correlated 

with each other, can lead to inefficiencies and biases in the estimation process. 

Detecting autocorrelation is thus a critical step in ensuring the robustness of 

statistical models. Among the various methods to detect autocorrelation, the Runs 

Test stands out as a formal approach, sometimes also known as the Geary test, a 

nonparametric test developed by Geary (1970). If there are too many runs, it would 

mean that in our example the residuals change sign frequently, thus indicating 

negative serial correlation. Similarly, if there are too few runs, they may suggest 

positive autocorrelation. The Runs Test generally involves the following steps: 

 

• Step 1 – Identify Runs: A run is defined as a sequence of similar 

observations. In the context of residuals, a run might consist of a sequence 

of positive or negative values. The test begins by identifying and counting 

the number of runs in the data. 
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• Step 2 – Calculate Expected Number of Runs: The expected number of runs 

is calculated based on the assumption that the data is randomly ordered. This 

involves using the proportions of positive and negative values in the data. 
 

• Step 3 – Compute the Test Statistic: The test statistic is calculated using 

the observed and expected number of runs, along with the variances and 

standard deviations of these runs. 

𝐸(𝑅) =
2𝑁1𝑁2

𝑁
+ 1      (7.5) 

𝜎𝑅
2 =

2𝑁1𝑁2(2𝑁1𝑁2−𝑁)

(𝑁)2(𝑁−1)
      (7.6) 

Where 𝑁1 is total number of + symbols, 𝑁2 is total number of – symbols, 𝑁 

is total number of observations, and 𝑅 is number of runs. 
 

• Step 4 – Compare with Critical Value: The test statistic is compared with 

a critical value from a standard normal distribution. If the test statistic falls 

in the critical region, the null hypothesis of no autocorrelation is rejected. 
 

• Step 5 – Interpret the Result: If the null hypothesis is rejected, it indicates 

the presence of autocorrelation in the data. 
 

The Runs Test is a versatile tool not only for detecting autocorrelation but also for 

identifying other underlying patterns or systematic behaviors in the data. It's worth 

noting that the Runs Test is one among several tests for autocorrelation, each with 

its unique characteristics and applications. 

 

7.4.3.2.2. Durbin-Watson d Test 
 

The Durbin-Watson d test is a renowned statistical method used to detect the 

presence of autocorrelation in the residuals from a regression analysis. 
 

• Step 1 – Estimate the model: Regress the original model and obtain the 

residuals 𝑢̂𝑡. 
 

• Step 1 – Durbin-Watson d statistic: he Durbin-Watson d statistic is 

defined as: 

𝑑 =
∑ (𝑢𝑡−𝑢𝑡−1)2𝑡=𝑛

𝑡=2

∑ 𝑢𝑡
2𝑡=𝑛

𝑡=1
=

∑ 𝑢𝑡
2+∑ 𝑢𝑡−1

2 −2 ∑ 𝑢𝑡𝑢𝑡−1

∑ 𝑢𝑡
2    (7.7) 

Since ∑ 𝑢̂𝑡
2 and ∑ 𝑢̂𝑡−1

2  differ in only one observation, they are 

approximately equal. Let use define 𝜌̂ =
∑ 𝑢𝑡𝑢𝑡−1

∑ 𝑢𝑡
2 , therefore, 

 𝑑 ≈ 2 (1 −
∑ 𝑢𝑡𝑢𝑡−1

∑ 𝑢𝑡
2  ) = 2(1 − 𝜌̂)   (7.8) 

Since −1 ≤ 𝜌 ≤ +1, this implies that 𝑑 lies within the bounds of 0 to 4: 

 0 ≤ 𝑑 ≤ +4      (7.9) 
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• Step 3 – Find Critical Values: For the given sample size and given number 

of explanatory variables, find out the critical 𝑑𝐿 and 𝑑𝑈 values.  
 

• Step 4 – Decision Rules: The value of d is then compared with tabulated 

values, under the null hypothesis 𝐻0: = 𝜌 = 0, to make a decision regarding 

autocorrelation: 
 

o No positive autocorrelation: Reject if 0 < 𝑑 < 𝑑𝐿  

o No positive autocorrelation: No decision if 𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈 

o No negative correlation: Reject if 4 − 𝑑𝐿 < 𝑑 < 4  

o No negative correlation: No decision if 4 − 𝑑𝑈 ≤ 𝑑 ≤ 4 − 𝑑𝐿 

o No autocorrelation, positive or negative: Do not reject if  𝑑𝑈 < 𝑑 <
4 − 𝑑𝑈  

The information about decision rules is shown in the following Figure 7.1: 

 

Figure 7.1: Durbin-Watson d Statistic 

 
 

• Step 5 – Interpretation: The value of d provides evidence regarding the 

presence or absence of positive or negative serial correlation in the 

residuals. 

 

The Durbin-Watson d test, despite its hoary past, has both merits and limitations. 

On the one hand, it's a popular and routinely used test for detecting serial 

correlation, especially in economic models involving time series data. On the other 

hand, the test has severe limitations, particularly when the value falls in the 

indecisive zone, leading to inconclusive evidence regarding autocorrelation. 

Moreover, the test's validity can be compromised in cases where the assumptions 

underlying the model are not met, such as when the explanatory variables are 

nonstochastic. Some authors have even contended that the Durbin-Watson statistic 

may not be useful in econometrics involving time series data, suggesting more 

useful tests based on large samples. 
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In academic literature, the Durbin-Watson d test has been extensively discussed and 

critiqued. For instance, Savin and White (1977) extended the original Durbin-

Watson table, providing insights into its application with extremely small samples 

or many regressors. Additionally, studies by Wooldridge (2002) have contributed 

to the understanding of autocorrelation and the limitations of the Durbin-Watson d 

test in various contexts. 

 

7.4.3.2.3. Breusch–Godfrey Test 

 

The Breusch-Godfrey (BG) test, also known as the Lagrange multiplier test, is a 

general test for detecting autocorrelation in a time series. The Breusch-Godfrey test 

is an advanced method for detecting autocorrelation that transcends some of the 

limitations of other tests. It is general in the sense that it allows for nonstochastic 

regressors, such as the lagged values of the regressand, higher-order autoregressive 

schemes like AR(1), AR(2), etc., and simple or higher-order moving averages of 

white noise error terms. Following are the steps involved: 
 

• Step 1 – Estimate the model: Start by estimating the regression model that 

you want to test for autocorrelation and obtain the residuals 𝑢̂𝑡. 
 

• Step 2 – Estimate the model: Regress 𝑢̂𝑡 on the original 𝑋𝑡 (if there is more 

than one 𝑋 variable in the original model, include them also) and 

𝑢̂𝑡−1, 𝑢̂𝑡−2, … , 𝑢̂𝑡−𝑝 , where the latter are the lagged values of the estimated 

residuals in step 1. Thus, if 𝑝 = 4, we will introduce four lagged values of 

the residuals as additional regressors in the model. Note that to run this 

regression we will have only (𝑛 −  𝑝) observations. In short, run the 

following regression: 

𝑢̂𝑡 = 𝛼1 + 𝛼2𝑋𝑡 + 𝜌̂1𝑢̂𝑡−1 + 𝜌̂2𝑢̂𝑡−2 + ⋯ + 𝜌̂4𝑢̂𝑡−4 + 𝜀𝑡 (7.10) 

 and obtain 𝑅2 from this auxiliary regression. 
 

• Step 3 – Calculate 𝝌𝟐: If the sample size is large (technically, infinite), 

Breusch and Godfrey have shown that (𝑛 −  𝑝)𝑅2~𝜒𝑝
2, that is, 

asymptotically, 𝑛 −  𝑝 times the 𝑅2 value obtained from the auxiliary 

regression follows the 𝜒2 distribution with 𝑝 df.  
 

• Step 4 – Interpretation: If in an application, calculated 𝜒2 exceeds the 

critical chi-square value at the chosen level of significance, we reject the 

null hypothesis (𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑝 = 0), in which case at least one ρ 

in is statistically significantly different from zero. 
 

The following practical points about the BG test may be noted: 
 

• The regressors included in the regression model may contain lagged values 
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of the regressand 𝑌, that is, 𝑌𝑡−1, 𝑌𝑡−2, etc., may appear as explanatory 

variables. Contrast this model with the Durbin–Watson test restriction that 

there may be no lagged values of the regressand among the regressors. 
 

• BG test is applicable even if the disturbances follow a 𝑝𝑡ℎ   order moving 

average (MA) process, that is, the 𝑢𝑡 are generated as follows: 

𝑢𝑡 = 𝜀𝑡 + 𝜆1𝜀𝑡−1 + 𝜆2𝜀𝑡−2 + ⋯ + +𝜆𝑝𝜀𝑡−𝑝   (7.11) 

Where 𝜀𝑡 is a white noise error term, that is, it satisfies all the classical 

assumptions. 
 

• If 𝜌 = 1, meaning first order autoregression, then the BG test is known as 

Durbin’s M test. 
 

The Breusch-Godfrey test, renowned for its generality, offers significant 

advantages over other autocorrelation detection methods. It accommodates both 

autoregressive (AR) and moving average (MA) error structures, as well as the 

presence of lagged values, making it a versatile tool in the field of econometrics. 

Moreover, its statistical power in both large and small samples sets it apart from 

other tests, enhancing its applicability across various research contexts. However, 

this test is not without its challenges. Its mathematical complexity and intricate 

reasoning behind the test statistic may pose difficulties for those less versed in 

advanced statistical methods. Additionally, being a large-sample test, its 

application in small samples is not strictly justified, which may limit its utility in 

certain scenarios. Thus, while the Breusch-Godfrey test's robustness and flexibility 

make it a preferred choice for many researchers, its complexity and large-sample 

orientation may present obstacles in specific applications. 

 

The Breusch-Godfrey test's ability to handle nonstochastic regressors and higher-

order schemes makes it a valuable tool in the econometrician's toolkit. Its general 

nature and statistical power in both large and small samples contribute to its 

preference over other tests, despite some complexities and limitations. 

 

In the multifaceted realm of econometrics, the detection of autocorrelation is a 

pivotal task, and various tests have been developed to address this challenge. The 

Durbin-Watson d test, with its simplicity and routine application, offers a quick 

assessment but may fall short in complex scenarios. The Breusch-Godfrey test, on 

the other hand, provides a more nuanced and general approach, accommodating 

various statistical complexities, but at the cost of mathematical intricacy. The Runs 

Test offers versatility but may lack the specificity required in certain contexts. Each 

test, with its unique characteristics, advantages, and limitations, serves needs and 

research contexts. The choice of a specific test often hinges on the underlying data 

structure, model assumptions, and the researcher's specific requirements. In 
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summary, the landscape of autocorrelation detection is rich and varied, and the 

judicious selection of a test requires a careful consideration of the research question, 

data properties, and the trade-offs between simplicity, generality, and statistical 

power. 
 

7.4.4. Remedial Measures of Autocorrelation  
 

Knowing the consequences of autocorrelation, especially the lack of efficiency of 

OLS estimators, we may need to remedy the problem. The remedy depends on the 

knowledge one has about the nature of interdependence among the disturbances, 

that is, knowledge about the structure of autocorrelation. 
 

7.4.4.1. When 𝝆 is Known 
 

If the coefficient of first-order autocorrelation is known, the problem of 

autocorrelation can be easily solved. As a starter, consider a two-variable regression 

model: 

 𝑌𝑡 = 𝛽1 + 𝛽2𝑋𝑡 + 𝑢𝑡       (7.12) 

Now assume that the error term follows a AR(1) scheme, namely: 

 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡       (7.13) 

If the model holds true at time 𝑡, it also holds true at time 𝑡 − 1. Hence, 

 𝑌𝑡−1 = 𝛽1 + 𝛽2𝑋𝑡−1 + 𝑢𝑡−1      (7.14) 

Multiplying the equation (7.14) by 𝜌: 

 𝜌𝑌𝑡−1 = 𝜌𝛽1 + 𝜌𝛽2𝑋𝑡−1 + 𝜌𝑢𝑡−1     (7.15) 

Subtracting equation (7.15) from (7.12)  

 (𝑌𝑡 − 𝜌𝑌𝑡−1) = 𝛽1(1 − 𝜌) + 𝛽2(𝑋𝑡 − 𝜌𝑋𝑡−1) + 𝜀𝑡   (7.16) 

Where 𝜀𝑡 = 𝑢𝑡 − 𝜌𝑢𝑡−1, we can express equation (7.16) as: 

 𝑌𝑡
∗ = 𝛽1

∗ + 𝛽2
∗𝑋𝑡

∗ + 𝜀𝑡       (7.17) 

Where 𝑌𝑡
∗ = (𝑌𝑡 − 𝜌𝑌𝑡−1), 𝑋𝑡

∗ = (𝑋𝑡 − 𝜌𝑋𝑡−1), 𝛽1
∗ = 𝛽1(1 − 𝜌) and  𝛽2

∗ = 𝛽2. 

Since the error term 𝜀𝑡 satisfies the usual OLS assumptions, we can apply OLS to 

the transformed variables 𝑌∗ and 𝑋∗ and obtain estimators with all the optimum 

properties, namely, BLUE. 
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7.4.4.2. When 𝝆 is Unknown 
 

Because 𝜌 is rarely known in practice, we cannot apply procedure mentioned in 

previous section. However, there are number of possibilities to solve the problem 

of autocorrelation. 
 

7.4.4.2.1 The First Difference Method 
 

Since ρ lies between 0 and ±1, one could start from two extreme positions. If 𝜌 =
+1, the generalized difference equation (7.16) reduces to the first difference 

equation: 

 𝑌𝑡 − 𝑌𝑡−1 = 𝛽2(𝑋𝑡 − 𝑋𝑡−1) + (𝑢𝑡 − 𝑢𝑡−1)   (7.18) 

 △ 𝑌𝑡 = 𝛽2 △ 𝑋𝑡 +△ 𝑢𝑡      (7.19) 

where △ is the first difference operator. Since the error term in Eq. (7.19) is free 

from (first-order) serial correlation, we can run the regression using OLS. The first-

difference transformation may be appropriate if the coefficient of autocorrelation is 

very high, say in excess of 0.8, or the Durbin–Watson d is quite low. Maddala has 

proposed this rough rule of thumb: Use the first-difference form whenever 𝑑 < 𝑅2. 
An interesting feature of the first-difference model is that there is no intercept in it. 

 

7.4.4.2.2. 𝝆 Based on Durbin-Watson d Statistics 
 

If the first-difference transformation is not applicable due to 𝜌 not being sufficiently 

close to unity, we can resort to a straightforward method to estimate 𝜌. This 

estimation can be derived from the previously established relationship between 𝑑 

and 𝜌 as expressed in Eq. (7.9), allowing us to calculate the value of accordingly. 

 𝜌̂ ≈ 1 −
𝑑

2
        (7.20) 

In reasonably large samples, one can extract the value of 𝜌 from Equation (7.20) 

and utilize it to transform the data, as demonstrated in the generalized difference 

equation (7.16). It's important to recognize, however, that the relationship between 

𝜌 and 𝑑 as given in Equation (7.20) might not be applicable or hold true in the 

context of small samples. 

 

7.4.4.2.3. 𝝆 Estimated from the Residuals 
 

If the AR(1) scheme 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡 is valid, a straightforward method to estimate 

𝜌 is to perform a regression of the residuals 𝑢̂𝑡, for the 𝑢̂𝑡 are consistent estimators 

of the true 𝑢𝑡, as previously observed. We run the following regression: 

 𝑢̂𝑡 = 𝜌𝑢̂𝑡−1 + 𝑣𝑡       (7.21) 

Where 𝑣𝑡 is the error term of this regression. Note that as OLS residuals sum to 

zero, there is no need to introduce the intercept term. 
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7.4.4.2.4. Iterative Methods of Estimating 𝝆  
 

The iterative methods of estimating 𝜌 provide a nuanced approach to understanding 

autocorrelation, going beyond single estimates to offer successive approximations. 

These methods begin with an initial value of 𝜌 and refine it through iterations. 

Among the various iterative methods, some notable ones include the Cochrane–

Orcutt iterative procedure, the Cochrane–Orcutt two-step procedure, the Durbin 

two-step procedure, and the Hildreth–Lu scanning or search procedure. 

 

The most popular among these is the Cochrane–Orcutt iterative method. Unlike 

other methods that provide only a single estimate, iterative methods work by 

successive approximation, continually refining the estimate of 𝜌. This iterative 

approach allows for more flexibility and can be used to estimate not only an AR(1) 

scheme but also higher-order autoregressive schemes, such as an AR(2) model 

represented by 𝑢̂𝑡 = 𝜌1𝑢̂𝑡−1 + 𝜌2𝑢̂𝑡−2 + 𝑣𝑡. Once the two 𝜌 values are obtained, 

one can easily extend the generalized difference equation (7.17). 

 

The ultimate objective of these iterative methods is to provide an estimate of 𝜌 that 

can be used to obtain Generalized Least Squares (GLS) estimates of the parameters. 

One distinct advantage of the Cochrane–Orcutt iterative method is its ability to 

handle complex autoregressive schemes, making it a versatile tool in econometric 

analysis. With the advent of modern computing, these iterative methods can now 

be efficiently implemented, further enhancing their applicability and utility in 

empirical research. 
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7.5. Self-Assessment Questions 
 

• What is autocorrelation, and how does it manifest in time-series data? 

• How can autocorrelation impact statistical inference and model 

interpretation? Provide examples. 

• Explain how the graphical method can be used to detect autocorrelation? 

What are its limitations? 

• Compare and contrast the Runs Test, Durbin-Watson d test, and Breusch–

Godfrey test. When might you choose one over the others? 

• Describe the steps involved in remedying autocorrelation when ρ is known 

and when ρ is unknown? Provide examples of each. 

• Explain the First Difference Method and its application in addressing 

autocorrelation. 

• Discuss the Cochrane–Orcutt iterative method and its significance in 

estimating ρ. 

• Given a dataset with autocorrelation, outline the steps you would take to 

detect and remedy the issue. 

• What are the advantages and disadvantages of different tests for detecting 

autocorrelation? Provide examples. 

• Reflect on the importance of understanding and addressing autocorrelation 

in data analysis. How might ignoring autocorrelation lead to incorrect 

conclusions? 

• Describe how modern computing tools can be leveraged to detect and 

remedy autocorrelation. Provide examples if possible. 

• What further reading or exploration might you undertake to deepen your 

understanding of autocorrelation and related statistical concepts? 
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8.1. INTRODUCTION 
 

In the complex realm of empirical modeling, the process of selecting the most 

suitable model and understanding its underlying assumptions is paramount. The 

Unit delves into the multifaceted aspects of model specification, exploring the 

criteria for selecting models that best represent the underlying data and theory. It 

sheds light on the different types of specification errors that can occur and the 

potential consequences these errors may have on the validity and reliability of the 

model. The Unit also examines various tests to detect and rectify these errors, 

emphasizing the importance of accurate measurements. A nuanced discussion is 

presented on the comparison between nested and non-nested models, elucidating 

the methods to test non-nested hypotheses. Furthermore, the Unit explores the 

intricate balance between model complexity and fit, providing insights into the 

criteria used in both nested and non-nested models. Overall, the Unit offers a 

comprehensive guide to understanding, selecting, and validating empirical models, 

equipping readers with the tools to navigate the complexities of econometric 

analysis. 

 

8.2. OBJECTIVES 
 

After reading the unit, the students will be able to: 
 

• understand Model Selection Criteria: Grasp the fundamental principles 

and methods used in selecting appropriate models, including understanding 

the difference between in-sample and out-of-sample forecasting. 
 

• identify Types of Specification Errors: Learn to recognize various 

specification errors such as omission of relevant variables, incorrect 

functional forms, and errors in measurement. 
 

• analyze Consequences of Model Specification Errors: Evaluate the 

impact of specification errors on the model, including understanding the 

concepts of underfitting and overfitting. 
 

• apply Tests of Specification Errors: Master various tests like Durbin-

Watson d statistic, Ramsey's RESET test, and Lagrange Multiplier test to 

detect and correct specification errors. 
 

• assess Errors of Measurements: Understand the nuances of errors in the 

measurement of dependent and explanatory variables and their implications 

on the model. 
 

• distinguish Between Nested and Non-Nested Models: Comprehend the 

differences between nested and non-nested models and their applications in 

different contexts. 
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• conduct Tests of Non-Nested Hypotheses: Learn to apply specific tests 

like the J test to evaluate non-nested hypotheses. 
 

• evaluate Model Selection Criteria in Nested and Non-Nested Models: 

Understand and apply various criteria such as AIC, SIC, and Mallows's Cp 

criterion for model selection in both nested and non-nested contexts. 
 

• develop Critical Thinking and Analytical Skills: Cultivate the ability to 

critically analyze models, recognize potential flaws, and apply appropriate 

remedies. 
 

• engage in Practical Application: Apply the theoretical knowledge gained 

to real-world data and scenarios, enhancing practical skills in model 

selection and validation. 
 

By achieving these objectives, students will be well-equipped to navigate the 

complexities of model specification and selection, fostering a robust understanding 

of econometric analysis and its practical applications. 
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8.3. Major Topics 
 

• Model Selection Criteria 

• Types of Specification Errors 

• Consequences of Model Specification Errors 

• Tests of Specification Errors 

• Errors of Measurements 

• Nested Versus Non-Nested Models 

• Tests of Non-Nested Hypothesis 

• Model Selection Criteria in Nested and Non-Nested Models 

 

8.4. Summary of the Units 
 

8.4.1. Model Selection Criteria 
 

In the context of empirical analysis, the selection of an appropriate model is guided 

by several vital criteria, as delineated by Hendry and Richard (1983): 

 

• Data Admissibility: The model must produce predictions that are logically 

feasible. In other words, the outcomes derived from the model must be 

within the realm of possibility. 
 

• Consistency with Theory: The model should align with sound economic 

principles. For instance, if Milton Friedman's permanent income hypothesis 

is valid, the intercept value in the regression of permanent consumption on 

permanent income would be anticipated to be zero. 
 

• Weakly Exogenous Regressors: The explanatory variables or regressors 

in the model should not be correlated with the error term. In certain 

scenarios, the exogenous regressors may even be strictly exogenous, 

meaning they are independent of the current, future, and past values of the 

error term. 
 

• Parameter Constancy: The values of the parameters within the model 

must remain stable. If they fluctuate, forecasting becomes challenging. As 

Friedman insightfully observed, the validity of a hypothesis or model is best 

tested by comparing its predictions with real-world outcomes. Without 

parameter constancy, such predictions lack reliability. 
 

• Data Coherency: The residuals estimated from the model must exhibit pure 

randomness, or technically, white noise. If the regression model is well-

specified, the residuals must be white noise. A deviation from this pattern 
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indicates a specification error in the model, signaling a need for further 

investigation. 
 

• Encompassing Nature: The chosen model should be comprehensive, 

encompassing or including all rival models. It should be capable of 

explaining the results of other models, ensuring that no other models can 

provide an improvement over the selected one. 
 

These criteria collectively form a robust framework for model selection, ensuring 

that the chosen model is not only theoretically sound but also empirically reliable. 

They guide the researcher in balancing the complexities of economic theory with 

the practicalities of data analysis, leading to models that provide meaningful 

insights and accurate predictions. 
 

In the process of developing an empirical model, researchers may encounter various 

challenges that lead to specification errors. These errors can be broadly categorized 

into the following types: 
 

• Omission of Relevant Variables: Leaving out variables that have a 

significant impact on the dependent variable can lead to biased and 

inconsistent estimates. 
 

• Inclusion of Unnecessary Variables: Conversely, including variables that 

do not have a significant relationship with the dependent variable can lead 

to inefficiency and overfitting. 
 

• Adoption of the Wrong Functional Form: Choosing an incorrect 

functional relationship between the dependent and independent variables 

can lead to systematic errors in the estimated parameters. 
 

• Errors of Measurement: Inaccuracies in the data collection process can 

introduce noise and bias into the model, affecting the reliability of the 

results. 
 

• Incorrect Specification of the Stochastic Error Term: Misrepresenting 

the error term can lead to violations of the assumptions underlying the 

statistical techniques used, affecting the validity of the inferences drawn. 
 

• Assumption that the Error Term is Normally Distributed: This 

assumption may not always hold true, and its violation can affect the 

properties of the estimators used. 
 

It is also essential to recognize the difference between model specification errors 

and model mis-specification errors. The former refers to situations where there is a 
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"true" model in mind, but somehow the correct model is not estimated. This 

includes the first four types of errors mentioned above. 

 

On the other hand, model mis-specification errors occur when the true model is 

unknown from the outset. This can lead to competing models, each with its own 

underlying assumptions and focus. For example, the controversy between 

Keynesians and monetarists illustrates this type of error. While monetarists 

emphasize the role of money in explaining changes in GDP, Keynesians focus on 

government expenditure. These represent two distinct and competing models, 

reflecting differing economic theories. 

 

In summary, understanding and addressing specification errors is crucial in 

empirical modeling. These errors can significantly impact the validity and 

interpretability of the model, and recognizing the nuances between different types 

of errors helps in designing more robust and accurate empirical analyses. 

 

8.4.2. Consequences of Model Specification Errors 
 

The consequences of model specification errors are critical to understand, 

particularly in the context of underfitting and overfitting a model.  

 

8.4.2.1. Underfitting a Model (Omitting Relevant Variables): 
 

• Bias in Estimation: Omitting a relevant variable that is correlated with the 

included explanatory variable leads to biased estimators. This bias affects 

not only the omitted variable but also the estimators of other parameters. 
 

• Inefficiency: The OLS estimators are no longer BLUE (Best Linear 

Unbiased Estimators), leading to inefficiency in the estimation. 
 

• Inconsistency in Hypothesis Testing: The t and F tests may no longer be 

valid, leading to incorrect conclusions about the significance of variables. 

 

8.4.2.2. Overfitting a Model (Including Unnecessary Variables): 
 

• Loss of Efficiency: Including unnecessary variables leads to a loss in the 

efficiency of the estimators and may also lead to the problem of 

multicollinearity. 

• Loss of Degrees of Freedom: Overfitting consumes degrees of freedom, 

reducing the power of statistical tests. 

• Complexity and Misinterpretation: An overfitted model may capture 

noise rather than the underlying relationship, leading to misinterpretation of 

the results. 
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The balance between underfitting and overfitting is delicate. Underfitting ignores 

essential complexities in the data, leading to a model that is too simple to capture 

the underlying relationships. Overfitting, on the other hand, includes unnecessary 

complexities, capturing random noise in the data and leading to a model that does 

not generalize well to new data. 

 

In general, the best approach is to include only explanatory variables that, on 

theoretical grounds, directly influence the dependent variable and that are not 

accounted for by other included variables. Knowing the consequences of 

specification errors is essential, but finding out whether one has committed such 

errors is quite another challenge. Specification biases often arise inadvertently, 

perhaps from our lack of understanding of the underlying economic theory or from 

data limitations. 

 

The practical question is not why specification errors are made, for they generally 

are, but how to detect them. Once it is found that specification errors have been 

made, the remedies often suggest themselves. If a variable is inappropriately 

omitted from a model, the obvious remedy is to include that variable in the analysis, 

assuming the data on that variable are available. 

 

In conclusion, model specification errors, whether through underfitting or 

overfitting, have significant consequences in econometric analysis. They can lead 

to biased and inefficient estimators, incorrect hypothesis testing, and misleading 

interpretations. Careful consideration of theory, data, and statistical diagnostics is 

essential to avoid these pitfalls and to develop models that provide reliable insights 

into the phenomena under study. 

 

8.4.3. Tests of Specification Errors 

 

In empirical testing, the certainty that the chosen model is entirely accurate is often 

elusive. Researchers develop models based on theory, introspection, and previous 

empirical work, and then subject them to testing. The adequacy of the model is 

determined post-analysis by examining various features such as the 𝑅2 value, 

estimated t ratios, signs of the estimated coefficients, and the Durbin–Watson 

statistic. If these diagnostics align well, the model is considered a fair representation 

of reality. Conversely, if the results are not satisfactory, concerns about model 

adequacy arise, leading to a search for potential errors such as omitted variables, 

incorrect functional form, or issues related to serial correlation. Here's a detailed 

look at the tests of specification errors, including various methods and their 

implications: 
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8.4.3.1. Examination of Residuals 

 

Residuals are the differences between observed values and predicted values. By 

examining the residuals, one can detect patterns that may indicate specification 

errors. If the residuals exhibit noticeable patterns, it indicates that there might be 

some specification error in the model. 

 

8.4.3.2. Durbin-Watson d Statistic 

 

The Durbin-Watson d statistic is used to detect first-order serial correlation in the 

error terms. It is a popular method but has limitations, especially if it falls in the 

indecisive zone, where one cannot conclude whether or not there is autocorrelation. 

To employ the Durbin–Watson test for detecting model specification errors, the 

following steps are undertaken: 
 

• Step 1 – Calculate Residuals: From the assumed model, the ordinary least 

squares (OLS) residuals are obtained. 
 

• Step 2 – Order Residuals: If the model is suspected to be mis-specified 

due to the exclusion of a relevant explanatory variable, such as 𝑍, the 

residuals from Step 1 are ordered according to increasing values of Z. The 

variable 𝑍 could be one of the 𝑋 variables included in the assumed model 

or a function of that variable, such as 𝑋2 or 𝑋3. 
 

• Step 3 – Compute the d Statistic: The d statistic is computed from the 

ordered residuals using the formula: 

𝑑 =
∑ (𝑢𝑡−𝑢𝑡−1)2𝑛

𝑡=2

∑ 𝑢𝑡
2𝑛

𝑡=1
      (8.1) 

Here, the subscript t is the index of observation and does not necessarily 

imply that the data are time series.  
 

• Step 3 – Interpret the d Value: By referring to the Durbin–Watson tables, 

if the estimated d value is significant, the hypothesis of model mis-

specification can be accepted. If this is the case, appropriate remedial 

measures will naturally suggest themselves. 
 

This process allows for a systematic examination of the model to identify potential 

specification errors, providing a pathway to refine the model for more accurate 

representation of the underlying phenomena. 
 

8.4.3.3. Ramsey’s RESET Test 
 

Ramsey's RESET (regression specification error test) is a general test for 

specification error. It can detect a range of alternatives and indicate something 
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wrong under the null hypothesis without necessarily giving clear guidance as to 

what alternative hypothesis is appropriate. The Ramsey's RESET is a general test 

for model specification errors. Here's how it can be applied: 

 

• Step 1 – Calculate Estimated Values: From the chosen model, obtain the 

estimated values of 𝑌, denoted as 𝑌̂𝑖.  
 

• Step 2 – Introduce Additional Regressors: Rerun the model by introducing 

𝑌̂𝑖 in some form as an additional regressor(s). If there is a curvilinear 

relationship between the residuals 𝑢̂𝑖 and 𝑌̂𝑖, one can introduce 𝑌̂𝑖
2 and 𝑌̂𝑖

3 

as additional regressors. Thus, the model becomes: 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑌̂𝑖
2 + 𝛽4𝑌̂𝑖

3 + 𝑢𝑖    (8.2) 
 

• Step 3 – Compute F Statistic: Let 𝑅𝑛𝑒𝑤
2  be the 𝑅2 obtained from the new 

model, and 𝑅𝑜𝑙𝑑
2  be that obtained from the original model. The 𝐹 test can be 

used to determine if the increase in 𝑅2 is statistically significant: 

𝐹 =
(𝑅𝑛𝑒𝑤

2 −𝑅𝑜𝑙𝑑
2 )/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠

(1−𝑅𝑛𝑒𝑤
2 )/(𝑛−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑚𝑜𝑑𝑒𝑙)

  (8.3) 

 

• Step 4 – Interpret the F Value: If the computed F value is significant, such 

as at the 5 percent level, one can accept the hypothesis that the original 

model is mis-specified. 
 

The RESET test is a powerful tool in detecting model specification errors, 

particularly when there is a concern that some nonlinear combination of the fitted 

values might be correlated with the residuals. By introducing these nonlinear 

combinations as additional regressors, the test can provide insights into whether the 

functional form of the model is correctly specified. 

 

8.4.3.4. Lagrange Multiplier (LM) Test for Adding Variables 
 

This test is an alternative to Ramsey's RESET test and is used to determine if 

additional variables should be included in the model. It helps in identifying if the 

model is a restricted version of another and whether adding variables would 

improve the specification. The Lagrange Multiplier (LM) test is a statistical test 

used to determine whether a restricted model is appropriate. Here's how the LM test 

can be applied to detect specification errors: 
 

• Step 1 – Estimate the Restricted Regression: Estimate the restricted 

regression 𝑌𝑖 = 𝜆1 + 𝜆2𝑋𝑖 + 𝑢1𝑖 by Ordinary Least Squares (OLS) and 

obtain the residuals, denoted as 𝑢̂𝑖.  
 

• Step 2 – Consider Unrestricted Regression: If the unrestricted regression 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖
2 + 𝛽4𝑋𝑖

3 + 𝑢𝑖 is the true regression, the residuals 
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obtained should be related to the squared and cubed output terms, such as 

𝑋𝑖
2 and 𝑋𝑖

3. 
 

• Step 3 – Regress Residuals: Regress the 𝑢̂𝑖 obtained in Step 1 on all the 

regressors (including those in the restricted regression). In this case, the 

regression becomes: 

𝑢̂𝑖 = 𝛼1 + 𝛼2𝑋𝑖 + 𝛼3𝑋𝑖
2 + 𝛼4𝑋𝑖

3 + 𝑣𝑖   (8.4) 

  where 𝑣 is an error term with the usual properties. 
 

• Step 4 – Compute Chi-Square Statistic: For large sample sizes, it has been 

shown that 𝑛 (the sample size) times the 𝑅2 estimated from the auxiliary 

regression follows the chi-square distribution with degrees of freedom equal 

to the number of restrictions imposed by the restricted regression. 

Symbolically: 

𝑛𝑅2~𝜒2       (8.5) 
 

• Step 4 – Interpret the Chi-Square Value: If the chi-square value obtained 

exceeds the critical chi-square value at the chosen level of significance, the 

restricted regression is rejected. Otherwise, it is not rejected. 
 

The LM test is a powerful tool for model specification, allowing researchers to test 

whether certain restrictions are valid. By comparing the restricted and unrestricted 

models, it provides insights into whether the simpler model is sufficient or if 

additional complexity is warranted. It's particularly useful in large samples where 

asymptotic properties come into play. 
 

In summary, the selection of an appropriate model and the detection of specification 

errors are vital steps in empirical analysis. Various tests and methods are available 

to ensure that the chosen model is a fair representation of reality and to detect and 

correct any specification or mis-specification errors. These methods provide a 

robust framework for understanding and interpreting the data, thereby enhancing 

the reliability and validity of the findings. The integration of these tests with 

theoretical understanding and computational tools can lead to more precise and 

insightful empirical studies. 

 

8.4.4. Errors of Measurement 
 

Errors of measurement in econometric modeling can have significant implications 

for the accuracy and reliability of the results. These errors can occur in both the 

dependent variable (𝑌) and the explanatory variable (𝑋), and each type of error has 

distinct consequences. 
 

• Errors of Measurement in the Dependent Variable 𝒀: When errors of 

measurement occur in the dependent variable 𝑌, they do not necessarily 
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destroy the unbiasedness property of the Ordinary Least Squares (OLS) 

estimators. Consider the model 𝑌𝑖
∗ = 𝛼 + 𝛽𝑋𝑖 + 𝑢𝑖, where 𝑌𝑖

∗ is not directly 

measurable, and we use an observable expenditure variable 𝑌𝑖 instead. The 

errors of measurement in 𝑌 do not affect the unbiasedness of the estimators, 

but they do impact the variances and standard errors of 𝛽. Specifically, the 

estimated variances are larger than in the case where there are no such errors 

of measurement. 

 

Although the errors of measurement in the dependent variable still give 

unbiased estimates of the parameters, the estimated variances are now 

larger. This does not necessarily invalidate the model but may reduce the 

precision of the estimates. 

 

• Errors of Measurement in the Explanatory Variable 𝑿: Errors of 

measurement in the explanatory variable 𝑋 pose a more serious problem. 

Consider the model 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖
∗ + 𝑢𝑖, where 𝑋𝑖

∗ represents permanent 

income. If there are measurement errors in X, the estimators become 

inconsistent, making consistent estimation of the parameters impossible. If 

𝛽 is assumed positive, 𝛽 will underestimate 𝛽, meaning it is biased toward 

zero. If there are no measurement errors in 𝑋, 𝛽 will provide a consistent 

estimator of 𝛽. 

 

Measurement errors in the explanatory variable make consistent estimation 

of the parameters impossible. This can lead to biased estimates and 

seriously undermine the validity of the model. 

 

Addressing errors of measurement is not straightforward. The use of instrumental 

or proxy variables is theoretically attractive but not always practical. It is crucial to 

measure the data as accurately as possible, and researchers should be careful in 

stating the sources of their data, how they were collected, and what definitions were 

used. 

 

In conclusion, errors of measurement are a potentially troublesome problem in 

econometric modeling, constituting an example of specification bias. They can lead 

to underestimation or overestimation of parameters, affecting the model's adequacy 

and reliability. The consequences of these errors underscore the importance of 

accurate data collection and careful consideration of the underlying assumptions in 

the modeling process. The presence of errors in measurement in the regressors can 

lead to biased as well as inconsistent OLS estimators, making the remedies often 

not easy and emphasizing the importance of careful data collection. 
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8.4.5. Nested vs Non-Nested Models 

 

In the realm of econometric modeling, the concept of nested and non-nested models 

plays a pivotal role in understanding and testing the specification of models. These 

models are instrumental in determining the relationships between variables and can 

be used to test different hypotheses or theories. 

 

• Nested Models: Nested models occur when one model can be derived as a 

special case of another by imposing certain restrictions on the parameters. 

Consider two models: 

  Model A: 𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖 + 𝑢𝑖 (8.6) 

  Model B: 𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝑢𝑖    (8.7) 

Model B is nested in Model A if 𝛽4 = 𝛽5 = 0. If this hypothesis is not 

rejected, Model A reduces to Model B.  

 

• Non-Nested Models: Non-nested models are those where one model 

cannot be derived as a special case of the other. Consider the following 

models: 

Model C: 𝑌𝑖 = 𝛼1 + 𝛼2𝑋2𝑖 + 𝛼3𝑋3𝑖 + 𝑢𝑖   (8.8) 

Model D: 𝑌𝑖 = 𝛽1 + 𝛽2𝑍2𝑖 + 𝛽3𝑍3𝑖 + 𝑢𝑖   (8.9) 

These models are non-nested because they contain different variables (𝑋's 

and 𝑍's), and one cannot be derived from the other. Even if the same 

variables are present, different functional forms can make models non-

nested, such as: 

Model E: 𝑌𝑖 = 𝛽1 + 𝛽2 ln 𝑍2𝑖 + 𝛽3 ln 𝑍3𝑖 + 𝑢𝑖  (8.10) 

 

Models D and E are non-nested due to the logarithmic transformation of 

variables. 
 

The distinction between nested and non-nested models is vital in econometric 

analysis. Nested models allow for straightforward testing using traditional methods, 

while non-nested models require more complex techniques. Nested models involve 

a hierarchical relationship where one model can be derived from another by 

imposing restrictions on the parameters. Non-nested models represent different 

theories or functional forms and cannot be reduced to one another. Understanding 

these concepts is essential for selecting the appropriate testing procedures and 

interpreting the results, reflecting the underlying theories and assumptions that 

guide empirical analysis. 
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8.4.6. Tests of Non-Nested Hypothesis 

 

According to Harvey (1990), there are two approaches to testing non-nested 

hypotheses. 

 

8.4.6.1. The Discrimination Approach 

 

When faced with multiple models, such as Models C and D from previous section, 

that involve the same dependent variable, a selection must be made based on a 

goodness-of-fit criterion. Commonly used criteria include the coefficient of 

determination (𝑅²) or the adjusted R², both of which provide insight into how well 

the model fits the observed data. However, it's essential to ensure that the dependent 

variable, or regressand, is consistent across the models being compared. 

 

Beyond these standard measures, other sophisticated criteria are often employed in 

model selection. These include Akaike's Information Criterion (AIC), Schwarz's 

Information Criterion (SIC), and Mallows's 𝐶𝑝 criterion, each offering a unique 

perspective on model fit and complexity. Many modern statistical software 

packages incorporate these criteria into their regression routines, facilitating the 

comparison process. 

 

Ultimately, the chosen model is typically the one that maximizes the adjusted R² or 

minimizes the values of AIC or SIC. This selection process is vital in empirical 

analysis, guiding researchers to the model that best represents the underlying data 

and theoretical considerations. 

 

8.4.6.2. The Discerning Approach 
 

8.4.6.2.1. The Non-Nested F-test or Encompassing F-test 
 

When considering Models C and D, as introduced in equation (8.8) and (8.9) the 

question arises: how to choose between these two non-nested models? A common 

approach is to estimate a nested or hybrid model, such as Model F, which 

encompasses both Models C and D.  

Model F: 𝑌𝑖 = 𝜆1 + 𝜆2𝑋2𝑖 + 𝜆3𝑋3𝑖 + 𝜆4𝑍2𝑖 + 𝜆5𝑍3𝑖 + 𝑢𝑖  (8.11) 

In this model, if Model C is correct, certain coefficients will equal zero, and if 

Model D is correct, other coefficients will equal zero. This can be tested using the 

non-nested F test. 

 

However, this testing procedure is not without problems. First, if the variables in 

Models C and D are highly correlated, it may lead to multicollinearity, making it 

difficult to determine the statistical significance of individual coefficients. In such 
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a scenario, neither Model C nor Model D may be definitively chosen as the correct 

model. 

 

Second, the choice of the reference hypothesis or model can influence the outcome. 

If Model C is chosen as the reference and found to be significant, it may be selected 

as the correct model. Conversely, if Model D is chosen as the reference and found 

to be significant, it may be selected instead. This ambiguity in selection, especially 

in the presence of severe multicollinearity, highlights the complexity of choosing 

between non-nested models. 

 

Lastly, the artificially nested model F may lack economic meaning, further 

complicating the decision-making process. The challenges presented by this 

approach underscore the importance of careful consideration and robust testing 

when selecting between competing models in empirical analysis. 

 

8.4.6.2.2. Davidson-MacKinnon J Test 

 

The J test is used to compare two non-nested models, such as Model C and Model 

D. The procedure is designed to overcome some of the problems associated with 

non-nested F testing and is carried out as follows: 

• Estimate Model D: Start by estimating Model D and obtaining the estimated 

𝑌 values, denoted as 𝑌̂𝐷𝑖
. 

 

• Add Predicted 𝑌 Value to Model C: The predicted 𝑌 value from Step 1 is 

added as an additional regressor to Model C, and the following model is 

estimated: 

𝑌𝑖 = 𝛼1 + 𝛼2𝑋2𝑖 + 𝛼3𝑋3𝑖 + 𝛼4𝑌̂𝐷𝑖
+ 𝑢𝑖   (8.12) 

Where 𝑌̂𝐷𝑖
 values are obtained from Step 1. 

 

• Test Hypothesis for 𝛼4: Using the 𝑡-test, test the hypothesis that 𝛼4 = 0.  
• Decision Making for Model C: If the hypothesis that 𝛼4 = 0 is not rejected, 

Model C can be accepted as the true model. If the null hypothesis is rejected, 

Model C cannot be the true model. 
 

• Reverse Roles of Models C and D: Now, estimate Model C first, use the 

estimated 𝑌 values (𝑌̂𝐶𝑖
) from this model as the regressor in model D, and 

repeat Step 4. More specifically, estimate the following model: 

𝑌𝑖 = 𝛽1 + 𝛽2𝑍2𝑖 + 𝛽3𝑍3𝑖 + 𝛽4𝑌̂𝐶𝑖
+ 𝑢𝑖   (8.13) 

Where 𝑌̂𝐶𝑖
are the estimated Y values from Model C. Test the hypothesis that 

𝛽4 = 0. If this hypothesis is not rejected, choose Model D over C. If the 

hypothesis that 𝛽4 = 0 is rejected, choose C over D. 
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The J test is intuitively appealing but has some problems. Since the tests given in 

Eqs. (8.12) and (8.13) are performed independently, there may be likely outcomes 

that could lead to ambiguity in the decision-making process. The test's design, 

which encompasses the principles of the Hendry methodology, aims to determine 

whether one model contains additional information that would improve the 

performance of the other, thus guiding the selection between non-nested models. 

 

Testing non-nested models is a multifaceted task that requires careful consideration 

of the underlying theories and data structures. The Discrimination Approach 

focuses on selecting the best-fitting model, while the Discerning Approach aims to 

identify the true model. Various statistical tests, such as the J-Test, Cox Test, and 

Vuong's Test, provide robust methodologies for comparing non-nested models, 

each with its unique strengths and applications. These tests play a crucial role in 

empirical analysis, guiding researchers in model selection and interpretation. 

 

8.4.7. Model Selection Criteria in Nested and Non-Nested Models 
 

In this section, the focus is on the various criteria used to select and compare 

different models, particularly for forecasting. The discussion differentiates between 

two types of forecasting: in-sample and out-of-sample. In-sample forecasting 

evaluates how well the selected model fits the data within the existing sample. 

Conversely, out-of-sample forecasting examines how the fitted model predicts 

future values of the dependent variable, considering the values of the independent 

variables. 

 

8.4.7.1. The 𝑹𝟐 Criterion 
 

The 𝑅2 value is a well-known measure of the goodness of fit in a regression model, 

defined as: 

 𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
      (8.14) 

However, this metric has several inherent limitations. First, it measures the in-

sample goodness of fit, showing how closely the estimated values of the dependent 

variable match the actual values within the sample. This means that it does not 

necessarily guarantee good forecasting for out-of-sample observations. Second, 

when comparing two or more 𝑅2 values, the dependent variable must be the same, 

limiting its applicability in some comparative scenarios. Third, since 𝑅2 cannot 

decrease when more variables are added to the model, there may be a temptation to 

"maximize the 𝑅2" by simply including more variables. While this may increase 

𝑅2, it can also inflate the variance of the forecast error, leading to a model that is 

overfitted and less generalizable. This highlights the need for careful consideration 
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and potential supplementary criteria when using 𝑅2 for model selection or 

evaluation. 
 

8.4.7.2. Adjusted 𝑹𝟐 Criterion 
 

The adjusted 𝑅2, denoted by 𝑅̅2, was developed by Henry Theil as a way to penalize 

the addition of regressors that might artificially increase the 𝑅2 value.  

 𝑅̅2 = 1 −
𝑅𝑆𝑆/(𝑛−𝑘)

𝑇𝑆𝑆/(𝑛−1)
= 1 − (1 − 𝑅2)

𝑛−1

𝑛−𝑘
    (8.15) 

Unlike 𝑅2, the adjusted 𝑅2 takes into account the number of regressors in the 

model, and it will only increase if the absolute t-value of the added variable is 

greater than 1. This makes 𝑅̅2 a more robust measure for comparative purposes, as 

it avoids the temptation to overfit the model by adding unnecessary variables. 

However, it's important to note that the comparison using 𝑅̅2 is only valid when the 

dependent variable, or regressand, is the same across the models being compared. 
 

8.4.7.3. Akaike’s Information Criterion (AIC) 
 

The Akaike Information Criterion (𝐴𝐼𝐶) is a measure that imposes a penalty for 

adding regressors to a model, going beyond the adjusted 𝑅2 in this regard. The 𝐴𝐼𝐶 

is defined as: 

 𝐴𝐼𝐶 = 𝑒2𝑘/𝑛 ∑ 𝑢𝑖
2

𝑛
= 𝑒2𝑘/𝑛 𝑅𝑆𝑆

𝑛
     (8.16)  

or, in its log-transformed form: 

 ln 𝐴𝐼𝐶 =
2𝑘

𝑛
+ ln (

𝑅𝑆𝑆

𝑛
)      (8.17) 

where 𝑘 is the number of regressors (including the intercept), 𝑛 is the number of 

observations, and 𝑅𝑆𝑆 is the residual sum of squares. The 𝐴𝐼𝐶 imposes a harsher 

penalty than 𝑅̅2 for adding more regressors, and the model with the lowest value of 

𝐴𝐼𝐶 is preferred. One of the advantages of 𝐴𝐼𝐶 is its applicability to both in-sample 

and out-of-sample forecasting performance, as well as its usefulness for both nested 

and non-nested models. It has also been employed to determine the lag length in an 

autoregressive model (𝐴𝑅(𝑝)). 

 

8.4.7.4. Schwarz’s Information Criterion (SIC) 
 

The Schwarz Information Criterion (𝑆𝐼𝐶), also known as the Bayesian Information 

Criterion (𝐵𝐼𝐶), is another measure used to select among competing models, and 

it's similar in spirit to the AIC. The SIC is defined as: 

 𝑆𝐼𝐶 = 𝑛𝑘/𝑛 ∑ 𝑢𝑖
2

𝑛
= 𝑛𝑘/𝑛 𝑅𝑆𝑆

𝑛
     (8.18) 

or, in its log-transformed form: 

 ln 𝑆𝐼𝐶 =
𝑘

𝑛
ln 𝑛 + ln (

𝑅𝑆𝑆

𝑛
)            (8.19) 
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where 𝑘 is the number of regressors (including the intercept), 𝑛 is the number of 

observations, and 𝑅𝑆𝑆 is the residual sum of squares. The penalty factor in 𝑆𝐼𝐶 is  
𝑘

𝑛
ln 𝑛, which imposes a harsher penalty than 𝐴𝐼𝐶. As with 𝐴𝐼𝐶, the model with the 

lowest value of 𝑆𝐼𝐶 is preferred. 𝑆𝐼𝐶 can be used to compare both in-sample and 

out-of-sample forecasting performance of a model, making it a versatile criterion 

for model selection. 

 

8.4.7.5. Mallow’s 𝑪𝒑 Criterion  
 

Mallows's 𝐶𝑝 criterion is a statistical measure used for model selection, particularly 

when choosing the number of regressors in a model. Suppose a model consists of 

𝑘 regressors, including the intercept, and we only choose 𝑝 regressors (𝑝 ≤ 𝑘) and 

obtain the residual sum of squares (RSS) using these 𝑝 regressors, denoted as 𝑅𝑆𝑆𝑝.  

The 𝐶𝑝 criterion is then defined as: 

 𝐶𝑝 =
𝑅𝑆𝑆𝑝

𝜎̂2 − (𝑛 − 2𝑝)      (8.20) 

where 𝑛 is the number of observations, and 𝜎̂2 is the estimator of the true variance. 

The expectation of 𝐶𝑝 can be approximated as: 

 𝐸(𝐶𝑝) =
(𝑛−𝑝)𝜎2

𝜎2 − (𝑛 − 2𝑝)     (8.21) 

This means that in choosing a model according to the 𝐶𝑝 criterion, one would look 

for a model that has a low 𝐶𝑝 value, about equal to 𝑝. Following the principle of 

parsimony, a model with 𝑝 regressors that gives a fairly good fit to the data would 

be chosen. In practice, one usually plots 𝐶𝑝 against 𝑝, and an "adequate" model will 

show up as a point close to the 𝐶𝑝 = 𝑝 line. For example, if two models are 

compared, Model A may be preferable to Model B if it is closer to the 𝐶𝑝 = 𝑝 line, 

indicating a better balance between fit and complexity. 
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8.5. Self-Assessment Questions 
 

• Can you explain the difference between in-sample and out-of-sample 

forecasting? Why is it important to consider both when selecting a model? 

• Can you list and describe the six common types of specification errors? Can 

you provide an example of a situation where each might occur? 

• What are the potential consequences of underfitting or overfitting a model? 

How can these be detected and corrected? 

• Can you explain the steps involved in the Durbin-Watson “d” statistics test 

for specification error? When would you use this test? 

• Can you describe the errors in the measurement of dependent variable "𝑌" 

and explanatory variable "𝑋"? How can these errors impact the model? 

• Can you define nested and non-nested models? Can you provide an example 

of each and explain how they differ? 

• Can you explain the 𝐽 test used for non-nested hypotheses? What are its 

steps, and what are some potential problems with this test? 

• Can you compare and contrast the 𝐴𝐼𝐶, 𝑆𝐼𝐶, and Mallows's 𝐶𝑝 criterion? 

When might you prefer one over the others? 

• Given a dataset and a specific research question, how would you approach 

model selection, including the criteria and tests you would use? 

• Imagine you are working with a model and discover a specification error. 

Can you outline the steps you would take to diagnose and correct the error? 

• Can you explain the concept of adjusted 𝑅² and how it penalizes for adding 

more regressors? Why might it be preferred over 𝑅² in some cases? 

• Can you provide an example from economics where non-nested models 

might be used to explain a phenomenon? How would you approach testing 

these models? 

• Can you interpret a given plot of 𝐶𝑝 against the number of regressors? How 

would you identify an “adequate” model from this plot? 

• Given a real-world scenario, can you outline a comprehensive approach to 

model selection, testing, and validation, considering all the concepts 

covered in the Unit? 
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9.1. INTRODUCTION 
 

In this Unit 09, the complex and multifaceted realm of simultaneous equation 

models is explored, delving into the very nature and structure that define these 

models. The Unit begins by elucidating the inherent characteristics of simultaneous 

equation models, laying the groundwork for a deeper understanding. It then 

navigates through the critical distinctions between endogenous and exogenous 

variables, providing insights into their roles and functions within the models. The 

exploration continues with an examination of structural equations and reduced-

form equations, shedding light on their interplay and significance. A pivotal section 

on the identification problem introduces the reader to the challenges and intricacies 

involved in model identification, followed by a comprehensive discussion on 

various methods of identification, including the order and rank conditions. The Unit 

then transitions into the methodologies of estimation, offering a detailed analysis 

of techniques such as Recursive Models, Ordinary Least Squares, Indirect Least 

Square (ILS), and Two Stage Least Square (2SLS). Finally, the Unit concludes with 

a reflective look at the limitations of dynamic analysis, providing a sobering 

perspective on the challenges and constraints that practitioners may encounter. 

Overall, this Unit serves as a robust guide to the multifarious aspects of 

simultaneous equation models, blending theoretical insights with practical 

methodologies. 
 

9.2. OBJECTIVES 
 

After thorough study of the unit, you will be able to: 
 

• understand the Nature of Simultaneous Equation Models: Grasp the 

fundamental characteristics and principles that define simultaneous 

equation models, laying a solid foundation for further exploration. 
 

• differentiate between Endogenous and Exogenous Variables: Learn to 

identify and distinguish between these two types of variables, understanding 

their roles, functions, and implications within the models. 
 

• comprehend Structural and Reduced-Form Equations: Develop an 

understanding of the interplay between structural equations and reduced-

form equations and recognize their significance in the modeling process. 
 

• master the Identification Problem: Gain insights into the challenges of 

model identification, including the complexities and intricacies involved in 

this critical aspect of modeling. 
 

• apply Methods of Identification: Acquire the skills to apply various 

methods of identification, including the order and rank conditions, to ensure 

the validity and reliability of the models. 
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• implement Methods of Estimation: Learn and practice various estimation 

techniques such as Recursive Models, Ordinary Least Squares, Indirect 

Least Square (ILS), and Two Stage Least Square (2SLS), understanding 

their applications and limitations. 
 

• evaluate Limitations of Dynamic Analysis: Reflect on the constraints and 

challenges of dynamic analysis within the context of simultaneous equation 

models, fostering a critical and nuanced perspective. 
 

• integrate Theory with Practice: Synthesize theoretical insights with 

practical methodologies, applying the knowledge gained to real-world 

scenarios and problems. 
 

• cultivate Critical Thinking and Analytical Skills: Encourage the 

development of critical thinking and analytical skills through the 

examination of complex concepts, methodologies, and challenges in the 

field of simultaneous equation models. 
 

• prepare for Advanced Study: Equip students with the foundational 

knowledge and skills necessary for more advanced study in econometrics 

and related fields, fostering a lifelong learning attitude. 
 

By achieving these objectives, students will be well-prepared to navigate the 

multifaceted world of simultaneous equation models, with a robust understanding 

of the underlying principles, methodologies, and practical applications. 
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9.3. Major Topics 
 

• The Nature of the Simultaneous Equation Models 

• Endogenous and Exogenous Variables 

• Structural Equations and Reduced form Equations 

• The Identification Problem 

• Methods of Identification 

• Methods of Estimations (OLS, ILS, 2SLS) 

• Limitations of Dynamic Analysis 

 

9.4. Summary of the Units 
 

9.4.1. The Nature of the Simultaneous Equation Models  

 

In the study of statistical models, simultaneous-equation models represent a 

significant departure from single-equation models. While single-equation models 

focus on a unidirectional cause-and-effect relationship between a dependent 

variable 𝑌 and one or more explanatory variables 𝑋, simultaneous-equation models 

recognize that this relationship may be bidirectional. 

 

The nature of simultaneous-equation models is such that a set of variables can be 

determined simultaneously by the remaining set of variables. This leads to a system 

of equations where each equation represents one of the mutually or jointly 

dependent (endogenous) variables. Here's a hypothetical example: 

 𝑌1𝑖 = 𝛽10 + 𝛽12𝑌2𝑖 + 𝛾11𝑋1𝑖 + 𝑢1𝑖     (9.1) 

 𝑌2𝑖 = 𝛽20 + 𝛽21𝑌1𝑖 + 𝛾21𝑋1𝑖 + 𝑢2𝑖     (9.2) 

In this system, 𝑌1 and 𝑌2 are mutually dependent endogenous variables, and 𝑋1 is 

an exogenous variable. The variables 𝑢1 and 𝑢2 are stochastic disturbance terms. 

 

A critical aspect of simultaneous-equation models is that estimating the parameters 

of a single equation without considering the others in the system can lead to 

problems. Specifically, if the method of ordinary least squares (OLS) is applied to 

each equation individually, disregarding the simultaneous nature of the system, the 

estimators may be biased and inconsistent. This inconsistency arises if the 

stochastic explanatory variables are not distributed independently of the stochastic 

disturbance terms. 

 

In the given example, unless it can be shown that 𝑌2 in Eq. (9.1) is distributed 

independently of 𝑢1, and 𝑌1 in Eq. (9.2) is distributed independently of 𝑢2, the 

application of classical OLS will lead to inconsistent estimates. 
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In summary, simultaneous-equation models recognize the complex, bidirectional 

relationships that can exist between variables. They require special methods of 

estimation that take into account the entire system of equations, as the direct 

application of standard techniques like OLS can lead to biased and inconsistent 

results. The Unit further explores examples of these models and introduces 

specialized methods developed to handle them, recognizing the inherent challenges 

in estimating such systems. 

 

9.4.2. Endogenous and Exogenous Variables  
 

In simultaneous-equation models, the distinction between dependent and 

explanatory variables becomes more complex, leading to the concepts of 

endogenous and exogenous variables. Here's a summary of these concepts: 
 

• Endogenous Variables: These are variables that are determined within the 

system of equations. They are mutually dependent and are affected by other 

variables in the system. In the example given in the text: 

𝑌1𝑖 = 𝛽10 + 𝛽12𝑌2𝑖 + 𝛾11𝑋1𝑖 + 𝑢1𝑖    (9.1) 

𝑌2𝑖 = 𝛽20 + 𝛽21𝑌1𝑖 + 𝛾21𝑋1𝑖 + 𝑢2𝑖    (9.2) 

In this system, 𝑌1 and 𝑌2 are endogenous variables, as they are determined 

by each other and the exogenous variable 𝑋1. If these variables are treated 

as stochastic and not distributed independently of the stochastic disturbance 

terms, the application of ordinary least squares (OLS) to these equations 

individually will lead to inconsistent estimates. 
 

• Exogenous Variables: These are variables that are determined outside the 

system of equations. They are not affected by the endogenous variables 

within the system. In the example above, 𝑋1 is an exogenous variable. It is 

not influenced by the endogenous variables 𝑌1 and 𝑌2, and its value is 

predetermined. 
 

• Lagged Variables: The text also mentions the concept of lagged variables, 

which can be either exogenous or endogenous. For example, 𝑋1(𝑡−1) is a 

lagged exogenous variable with a lag of one time period, and 𝑌𝑡−1 is a 

lagged endogenous variable with a lag of one time period. Lagged variables 

are considered predetermined, as their values are not determined by the 

model in the current time period. 
 

In summary, the concepts of endogenous and exogenous variables are central to the 

understanding of simultaneous-equation models. Endogenous variables are 

determined within the system and may influence each other, while exogenous 

variables are determined outside the system and are not influenced by the 

endogenous variables. Proper classification and understanding of these concepts 
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are crucial for the correct estimation and interpretation of simultaneous-equation 

models. 
 

9.4.3. Structural Equations and Reduced Form Equations  
 

In the study of economic relationships, it is often essential to consider the 

interconnected nature of variables, where changes in one variable can influence and 

be influenced by changes in others. This complexity is captured through 

simultaneous-equation models, a powerful tool that allows for the modeling of 

mutual dependencies between variables. 
 

• Structural Equations: Structural equations represent the theoretical 

relationships between variables as derived from economic theory or other 

substantive considerations. They are the fundamental equations that 

describe how the endogenous variables are determined within the system. 

Structural equations typically include both endogenous and exogenous 

variables, as well as stochastic error terms. Equations (9.1) and (9.2) are 

structural equations, as they represent the theoretical relationships between 

the endogenous variables 𝑌1 and 𝑌2, the exogenous variable 𝑋1, and the error 

terms 𝑢1 and 𝑢2. 
 

• Reduced Form Equations: Reduced-form equations are derived from the 

structural equations by solving them for the endogenous variables in terms 

of only the exogenous variables and the error terms. They do not contain 

any endogenous variables on the right-hand side. Reduced-form equations 

provide the statistical relationships that can be estimated directly from the 

data, without any assumptions about the structural parameters. 

 

If we were to solve the structural equations above for 𝑌1 and 𝑌2 in terms of 

𝑋1, we would obtain the reduced-form equations. These equations would 

express 𝑌1 and 𝑌2 solely as functions of the exogenous variable 𝑋1 and new 

error terms, which would be combinations of the original error terms 𝑢1 and 

𝑢2. 
 

Structural equations represent the underlying theoretical relationships in a 

simultaneous-equation model, while reduced-form equations provide the empirical 

relationships that can be estimated directly. Understanding both forms is essential 

for the proper estimation and interpretation of simultaneous-equation models. 
 

9.4.4. The Identification Problem 
 

The identification problem in simultaneous-equation models is a critical aspect of 

econometric analysis. It refers to the challenge of determining whether numerical 

estimates of the parameters of a structural equation can be obtained from the 
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estimated reduced-form coefficients. This problem can manifest in three ways: 

under identification, exact identification, and over identification. 
 

• Under identification: An equation is considered under identified or 

unidentified if it is impossible to obtain estimates of the structural 

parameters. No matter how extensive the data, the structural parameters 

cannot be estimated. Most simultaneous-equation systems in economics and 

finance are over identified rather than under identified, so under 

identification is often not a major concern. 
 

• Exact Identification: An equation is said to be exactly identified if unique 

numerical values of the structural parameters can be obtained. This means 

that there is a one-to-one correspondence between the structural and 

reduced-form parameters, allowing for precise estimation. 
 

• Over identification: An equation is considered over identified if more than 

one numerical value can be obtained for some of the parameters of the 

structural equations. In this case, there may be several estimates of one or 

more structural coefficients, leading to ambiguity in the interpretation of the 

model. 
 

The identification problem arises because different sets of structural coefficients 

may be compatible with the same set of data. This can make it difficult to determine 

which particular hypothesis or model is being investigated. The circumstances 

under which each of these cases occurs can be complex, and special methods have 

been developed to handle them. 

 

The identification problem is fundamental in simultaneous-equation models, as it 

precedes the problem of estimation. If an equation is identified, it can be either just 

identified or over identified. In the former case, unique values of structural 

coefficients can be obtained; in the latter, there may be more than one value for one 

or more structural parameters. 
 

9.4.5. Methods of Identification 
 

The section on Methods of Identification in simultaneous equation models from the 

book delves into the systematic routine of determining the identification of an 

equation in a system of simultaneous equations. This process can be time-

consuming and laborious, but the introduction of order and rank conditions lightens 

the task. 
 

9.4.5.1. The Order Condition of Identifiability 
 

The order condition is a necessary but not sufficient condition for identification. It 

is defined as: 
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In a model of M simultaneous equations, in order for an equation 

to be identified, the number of predetermined variables excluded 

from the equation must not be less than the number of 

endogenous variables included in that equation less 1, that is 

  𝐾 − 𝑘 ≥ 𝑚 − 1     (9.3) 

Where, 𝐾 is number of predetermined variables in the model, 

including the intercept, 𝑘 is number of predetermined variables 

in each equation, 𝑚 is number of endogenous variables in a given 

equation and 𝑀 is number of endogenous variables in the model.  
 

In the above condition if 𝐾 − 𝑘 = 𝑚 − 1, the equation is just identified, but if 𝐾 −
𝑘 > 𝑚 − 1, it is over identified. This condition is essential for understanding 

whether an equation is identified, but it may not be enough on its own. 

 

9.4.5.2. The Rank Condition of Identifiability 
 

The rank condition of identification is a necessary and sufficient condition that goes 

beyond the order condition in simultaneous equation models. While the order 

condition is necessary, it may not be sufficient for identification. The rank condition 

ensures that the predetermined variables excluded from a particular equation but 

present in the model are all independent, allowing a one-to-one correspondence 

between the structural coefficients (the 𝛽's) and the reduced-form coefficients. This 

ensures that the structural parameters can be estimated from the reduced-form 

coefficients. 

 

In essence, the rank condition of identification ensures that the equation is identified 

only if the variables excluded from the equation influence the other equations in the 

system. It provides a more robust and definitive criterion for identification, ensuring 

that the model's parameters can be estimated with confidence. 

In a model containing M equations in M endogenous variables, an 

equation is identified if and only if at least one nonzero determinant 

of order (M − 1)(M − 1) can be constructed from the coefficients of 

the variables (both endogenous and predetermined) excluded from 

that particular equation but included in the other equations of the 

model. 

The rank condition is a method used to determine the identifiability of a structural 

equation in a system of simultaneous equations. Here's how to apply the rank 

condition: 
 

• Step 1 – Tabulate the System: Write down the system of equations in a 

tabular form. 
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• Step 2 – Strike out Row Coefficients: In the row where the equation under 

consideration appears, strike out the coefficients. 
 

• Step 3 – Strike out Corresponding Columns: Also, strike out the columns 

corresponding to those coefficients in step (2) that are nonzero. 
 

• Step 4 – Form Matrices: The remaining entries in the table will give only 

the coefficients of the variables included in the system but not in the 

equation under consideration. From these entries, form all possible matrices 

of order 𝑀 − 1 and obtain the corresponding determinants. 
 

• Step 5 – Determine Identifiability: If at least one nonvanishing or nonzero 

determinant can be found, the equation in question is identified (either just 

or over-identified). The rank of the matrix in this case is exactly equal to 

𝑀 − 1. If all the possible (𝑀 − 1)(𝑀 − 1) determinants are zero, the rank 

of the matrix is less than 𝑀 − 1, and the equation is not identified. 
 

The general principles of identifiability derived from the rank condition are as 

follows: 
 

• Over-Identified: If 𝐾 − 𝑘 > 𝑚 − 1 and the rank of the 𝐴 matrix is 𝑀 − 1, 

the equation is over-identified. 
 

• Exactly Identified: If 𝐾 − 𝑘 > 𝑚 − 1 and the rank of the matrix 𝐴 is 𝑀 −
1, the equation is exactly identified. 

 

• Under-Identified: If 𝐾 − 𝑘 ≥ 𝑚 − 1 and the rank of the matrix 𝐴 is less 

than 𝑀 − 1, the equation is under-identified. 
 

• Unidentified: If 𝐾 − 𝑘 < 𝑚 − 1, the structural equation is unidentified. The 

rank of the A matrix in this case is bound to be less than 𝑀 − 1. 
 

This method ensures that the structural parameters of the model can be accurately 

estimated, considering the simultaneous relationships between variables. 

 

9.4.6. Methods of Estimations 
 

In the context of simultaneous-equation models with M endogenous variables, there 

are two main approaches to estimate the structural equations: single-equation 

methods (limited information methods) and system methods (full information 

methods). Single-equation methods estimate each equation individually, 

considering only the restrictions placed on that specific equation. System methods, 

on the other hand, estimate all equations simultaneously, considering all restrictions 

across the system. Ideally, the systems method, such as the full information 

maximum likelihood (FIML) method, should be used to preserve the spirit of 
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simultaneous-equation models. However, in practice, these methods are not 

commonly used due to enormous computational burdens, highly nonlinear 

solutions in the parameters, and sensitivity to specification errors. Even with high-

speed computers, the computations for large models can be a daunting task, and 

any error in one equation can affect the entire system. 

 

In practice, therefore, single-equation methods are often used. Following are the 

methods of estimation based on single equation methods. 

 

9.4.6.1. Recursive Models and Ordinary Least Squares 
 

In the context of simultaneous equations, the Ordinary Least Squares (OLS) method 

is generally inappropriate due to the interdependence between the stochastic 

disturbance term and the endogenous explanatory variables. If applied incorrectly, 

the estimators are biased and inconsistent. However, there is an exception where 

OLS can be appropriately applied: the case of recursive, triangular, or causal 

models. 
 

Consider a three-equation system: 

 𝑌1𝑡 = 𝛽10 + 𝛾11𝑋1𝑡 + 𝛾12𝑋2𝑡 + 𝑢1𝑡     (9.4) 

 𝑌2𝑡 = 𝛽20 + 𝛽21𝑌1𝑡 + 𝛾21𝑋1𝑡 + 𝛾22𝑋2𝑡 + 𝑢2𝑡   (9.5) 

 𝑌3𝑡 = 𝛽30 + 𝛽31𝑌1𝑡 + 𝛽32𝑌2𝑡 + 𝛾31𝑋1𝑡 + 𝛾32𝑋2𝑡 + 𝑢3𝑡  (9.6) 

Here, the disturbances are such that: 

 𝑐𝑜𝑣(𝑢1𝑡, 𝑢2𝑡) = 𝑐𝑜𝑣(𝑢1𝑡, 𝑢3𝑡) = 𝑐𝑜𝑣(𝑢2𝑡, 𝑢3𝑡) = 0 

The first equation contains only exogenous variables uncorrelated with the 

disturbance term 𝑢1𝑡, so OLS can be applied. In the second equation, OLS can also 

be applied, provided 𝑌1𝑡 and 𝑢2𝑡 are uncorrelated, which is true since 𝑢1, affecting 

𝑌1, is uncorrelated with 𝑢2. The same logic extends to the third equation, allowing 

OLS to be applied to each equation separately. 

 

In the recursive system, there is no interdependence among the endogenous 

variables; each equation exhibits unilateral causal dependence. For example, 𝑌1 

affects 𝑌2, but 𝑌2 doesn't affect 𝑌1. This lack of mutual influence allows for the 

application of OLS, making it clear that there is no simultaneous-equation problem 

in this situation. The structure of these systems leads to the name "causal models." 

 

9.4.6.2. Indirect Least Square (ILS) 
 

The method of Indirect Least Squares (ILS) is used to obtain estimates of the 

structural coefficients from the Ordinary Least Squares (OLS) estimates of the 

reduced-form coefficients for a just or exactly identified structural equation. The 

ILS method involves the following three steps: 
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• Step 1 – Obtain the Reduced-Form Equations: The first step is to obtain 

the reduced-form equations from the structural equations. In these reduced-

form equations, the dependent variable in each equation is the only 

endogenous variable and is a function solely of the predetermined variables 

(exogenous or lagged endogenous) and the stochastic error term(s). 
 

• Step 2 – Apply OLS to the Reduced-Form Equations: In the second step, 

OLS is applied to the reduced-form equations individually. This operation 

is permissible since the explanatory variables in these equations are 

predetermined and hence uncorrelated with the stochastic disturbances. The 

estimates obtained through this step are consistent. 
 

• Step 3 – Obtain Estimates of the Original Structural Coefficients: The 

final step involves obtaining estimates of the original structural coefficients 

from the estimated reduced-form coefficients obtained in Step 2. If an 

equation is exactly identified, there is a one-to-one correspondence between 

the structural and reduced-form coefficients, allowing unique estimates of 

the former to be derived from the latter. 
 

The name "Indirect Least Squares" reflects the fact that the structural coefficients, 

which are often the primary object of inquiry, are obtained indirectly from the OLS 

estimates of the reduced-form coefficients. This method provides a systematic way 

to translate the information contained in the reduced-form equations into insights 

about the underlying structural relationships. 

 

The Indirect Least Squares (ILS) estimators possess certain properties that are 

inherited from the reduced-form estimators. These include consistency and 

asymptotic efficiency, meaning that as the sample size increases indefinitely, the 

estimators converge to their true values and achieve the lowest possible variance. 

However, in small samples, the estimators may not necessarily be unbiased. This 

means that the expected value of the estimators may not equal the true population 

parameters. For instance, in the case of the supply function, the ILS estimators are 

biased in small samples, but this bias disappears as the sample size increases, 

demonstrating the property of consistency. Therefore, while the ILS method has 

desirable asymptotic properties, its performance in small samples may be less 

satisfactory due to potential bias. 
 

9.4.6.3. Two Stage Least Square (2SLS) 
 
 

The Two-Stage Least Squares (2SLS) method is a sophisticated technique 

employed to address the challenges of estimating simultaneous equation models. 

It's particularly useful when dealing with endogeneity issues, where ordinary least 

squares (OLS) would yield biased and inconsistent estimators. 
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To illustrate 2SLS, consider the following system of equations: 
 

 𝑌1𝑡 = 𝛽10 + 𝛽12𝑌2𝑡 + 𝛾11𝑋1𝑡 + 𝛾12𝑋2𝑡 + 𝑢1𝑡    (9.7) 

 𝑌2𝑡 = 𝛽20 + 𝛽21𝑌1𝑡 + 𝛾23𝑋3𝑡 + 𝛾24𝑋4𝑡 + 𝑢2𝑡   (9.10) 
 

The 2SLS method is implemented through a sequence of well-defined steps, as follows: 
 
 

• First Stage: In the initial stage, each endogenous explanatory variable in 

the structural equation under consideration is regressed on all the exogenous 

variables in the system, including those that do not appear in the equation being 

estimated. This leads to the estimation of the predicted values of the 

endogenous explanatory variables. Mathematically, this can be represented as: 
 

 𝑌1𝑡 = 𝜋10 + 𝜋11𝑋1𝑡 + 𝜋12𝑋2𝑡 + 𝜋13𝑋3𝑡 + 𝜋14𝑋4𝑡 + 𝑢1𝑡 

 (9.11) 

 𝑌2𝑡 = 𝜋20 + 𝜋21𝑋1𝑡 + 𝜋22𝑋2𝑡 + 𝜋23𝑋3𝑡 + 𝜋24𝑋4𝑡 + 𝑢2𝑡 

 (9.12) 

Where 𝑌1𝑡 and 𝑌2𝑡 are the endogenous variable, 𝑋1𝑡, 𝑋2𝑡, 𝑋3𝑡, and 𝑋4𝑡  are 

the exogenous variables. 
 

• Second Stage: In the subsequent stage, the structural equation is estimated 

by replacing the endogenous explanatory variables with the predicted 

values obtained from the first stage. This is akin to applying OLS to the 

modified equation: 
 

𝑌1𝑡 = 𝛽10 + 𝛽12𝑌̂2𝑡 + 𝛾11𝑋1𝑡 + 𝛾12𝑋2𝑡 + 𝑢1𝑡   (9.13) 

 𝑌2𝑡 = 𝛽20 + 𝛽21𝑌̂1𝑡 + 𝛾23𝑋3𝑡 + 𝛾24𝑋4𝑡 + 𝑢2𝑡  (9.14) 
 

Where 𝑌̂1𝑡 and 𝑌̂2𝑡 are the predicted value of the endogenous explanatory 

variable from the first stage. 
 

The 2SLS method has been lauded for its ability to provide consistent estimators even 

when the endogenous explanatory variables are correlated with the error terms. However, 

it's worth noting that the estimators may not be efficient if the errors are heteroskedastic or 

correlated across equations. Several studies have expounded upon the properties and 

applications of 2SLS. For instance, the seminal work by Theil (1953) and Basmann (1957) 

has been instrumental in elucidating the theoretical underpinnings of this method. 
 

In summary, the Two-Stage Least Squares method is a recondite yet powerful tool 

in econometric analysis, providing a robust solution to the challenges posed by 

simultaneous equation models. Its step-by-step approach allows for the consistent 

estimation of structural parameters, making it a preferred choice among researchers 

and practitioners alike. 
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9.4.7. Limitations of Dynamic Analysis 
 
 

Here's a synthesis of the insights: 
 

• Data Quality and Model Formulation: The results of research are only as 

good as the quality of the data. If the data quality is poor, the results may be 

unsatisfactory. The inability to formulate the model precisely due to weak 

underlying theory or lack of appropriate data can also be a limitation. 
 

• Computational Burden and Sensitivity to Errors: Systems methods like 

full information maximum likelihood (FIML) are computationally intensive 

and can lead to highly nonlinear solutions. They are also very sensitive to 

specification errors, making single-equation methods often more practical. 
 

• Panel Data Challenges: Despite the advantages of panel data, they pose 

several estimation and inference problems. Issues like heteroscedasticity, 

autocorrelation, and cross-correlation in individual units need to be addressed. 
 

• Limitations in Time Series Analysis: In economic time series data, 

successive values tend to be highly correlated, leading to multicollinearity. 

This results in imprecise estimation and potential erroneous conclusions 

about statistical significance. The sequential search for the lag length also 

opens the researcher to the charge of data mining. 
 

• Challenges with VAR Models: Vector autoregression (VAR) models, 

while emphasizing forecasting, are less suited for policy analysis. Choosing 

the appropriate lag length is a significant challenge, and estimating many 

parameters can consume a lot of degrees of freedom. Ensuring stationarity 

in all variables is also a strict requirement. 
 

• No Single Solution: There may be more than one solution to a particular 

problem, and its often unclear which method is best. Multiple violations of 

the classical linear regression model may coexist, and there is no single test 

that will solve all problems simultaneously. 
 
 

• Limitations in Estimating Time-Invariant Variables: In some situations, 

methods like the Least Squares Dummy Variable (LSDV) approach may 

not be able to identify the impact of time-invariant variables, making precise 

estimation difficult. 
 

 

These limitations underscore the complexity and challenges in dynamic analysis, 

requiring careful consideration of methodological choices, data quality, and the 

underlying assumptions of the models. The recondite nature of these challenges 

emphasizes the need for robust methodological rigor and a nuanced understanding 

of the underlying econometric principles. 
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9.5. Self-Assessment Questions 
 

• What are simultaneous equation models, and why are they important in 

econometric analysis? Provide an example to illustrate your understanding. 
 

• Define endogenous and exogenous variables. How do they differ, and what 

roles do they play in simultaneous equation models? 
 

• Explain the relationship between structural equations and reduced-form 

equations. Why are both forms significant in modeling? 
 

• What is the identification problem in the context of simultaneous equation 

models? Why is it considered a challenge? 
 

• Describe the order condition of identifiability. How does it contribute to the 

identification of a model? 
 

• Explain the rank condition of identifiability and outline the steps involved 

in applying it. 
 

• How can recursive models be estimated using Ordinary Least Squares 

(OLS)? Provide an example to illustrate the process. 
 

• Summarize the Indirect Least Square (ILS) method and its steps. When is it 

appropriate to use this method? 
 

• Describe the Two Stage Least Square (2SLS) method. What are its key 

features, and how is it implemented? 
 

• Discuss the limitations of dynamic analysis in simultaneous equation 

models. Provide examples or scenarios where these limitations might be 

evident. 
 

• How do the concepts of endogenous and exogenous variables, structural and 

reduced-form equations, and various estimation methods interrelate in the 

context of simultaneous equation models? 
 

• Reflect on a real-world application of simultaneous equation models that 

you have studied. What methods were used, and how were the challenges 

and limitations addressed? 
 

• If you were to conduct a study using simultaneous equation models, what 

approach would you take? Outline your methodology, including the 

identification and estimation methods you would employ. 
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